# This file is originally from DepthCrafter/depthcrafter/utils.py at main ยท Tencent/DepthCrafter # SPDX-License-Identifier: MIT License license # # This file may have been modified by ByteDance Ltd. and/or its affiliates on [date of modification] # Original file is released under [ MIT License license], with the full license text available at [https://github.com/Tencent/DepthCrafter?tab=License-1-ov-file]. import numpy as np import matplotlib.cm as cm import imageio try: from decord import VideoReader, cpu DECORD_AVAILABLE = True except: import cv2 DECORD_AVAILABLE = False def ensure_even(value): return value if value % 2 == 0 else value + 1 def read_video_frames(video_path, process_length, target_fps=-1, max_res=-1): if DECORD_AVAILABLE: vid = VideoReader(video_path, ctx=cpu(0)) original_height, original_width = vid.get_batch([0]).shape[1:3] height = original_height width = original_width if max_res > 0 and max(height, width) > max_res: scale = max_res / max(original_height, original_width) height = ensure_even(round(original_height * scale)) width = ensure_even(round(original_width * scale)) vid = VideoReader(video_path, ctx=cpu(0), width=width, height=height) fps = vid.get_avg_fps() if target_fps == -1 else target_fps stride = round(vid.get_avg_fps() / fps) stride = max(stride, 1) frames_idx = list(range(0, len(vid), stride)) if process_length != -1 and process_length < len(frames_idx): frames_idx = frames_idx[:process_length] frames = vid.get_batch(frames_idx).asnumpy() else: cap = cv2.VideoCapture(video_path) original_fps = cap.get(cv2.CAP_PROP_FPS) original_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) original_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) if max_res > 0 and max(original_height, original_width) > max_res: scale = max_res / max(original_height, original_width) height = round(original_height * scale) width = round(original_width * scale) fps = original_fps if target_fps < 0 else target_fps stride = max(round(original_fps / fps), 1) frames = [] frame_count = 0 while cap.isOpened(): ret, frame = cap.read() if not ret or (process_length > 0 and frame_count >= process_length): break if frame_count % stride == 0: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # Convert BGR to RGB if max_res > 0 and max(original_height, original_width) > max_res: frame = cv2.resize(frame, (width, height)) # Resize frame frames.append(frame) frame_count += 1 cap.release() frames = np.stack(frames, axis=0) return frames, fps def save_video(frames, output_video_path, fps=10, is_depths=False): writer = imageio.get_writer(output_video_path, fps=fps, macro_block_size=1, codec='libx264', ffmpeg_params=['-crf', '18']) if is_depths: colormap = np.array(cm.get_cmap("inferno").colors) d_min, d_max = frames.min(), frames.max() for i in range(frames.shape[0]): depth = frames[i] depth_norm = ((depth - d_min) / (d_max - d_min) * 255).astype(np.uint8) depth_vis = (colormap[depth_norm] * 255).astype(np.uint8) writer.append_data(depth_vis) else: for i in range(frames.shape[0]): writer.append_data(frames[i]) writer.close()