# Copyright (2025) Bytedance Ltd. and/or its affiliates # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np def compute_scale_and_shift(prediction, target, mask, scale_only=False): if scale_only: return compute_scale(prediction, target, mask), 0 else: return compute_scale_and_shift_full(prediction, target, mask) def compute_scale(prediction, target, mask): # system matrix: A = [[a_00, a_01], [a_10, a_11]] prediction = prediction.astype(np.float32) target = target.astype(np.float32) mask = mask.astype(np.float32) a_00 = np.sum(mask * prediction * prediction) a_01 = np.sum(mask * prediction) a_11 = np.sum(mask) # right hand side: b = [b_0, b_1] b_0 = np.sum(mask * prediction * target) x_0 = b_0 / (a_00 + 1e-6) return x_0 def compute_scale_and_shift_full(prediction, target, mask): # system matrix: A = [[a_00, a_01], [a_10, a_11]] prediction = prediction.astype(np.float32) target = target.astype(np.float32) mask = mask.astype(np.float32) a_00 = np.sum(mask * prediction * prediction) a_01 = np.sum(mask * prediction) a_11 = np.sum(mask) b_0 = np.sum(mask * prediction * target) b_1 = np.sum(mask * target) x_0 = 1 x_1 = 0 det = a_00 * a_11 - a_01 * a_01 if det != 0: x_0 = (a_11 * b_0 - a_01 * b_1) / det x_1 = (-a_01 * b_0 + a_00 * b_1) / det return x_0, x_1 def get_interpolate_frames(frame_list_pre, frame_list_post): assert len(frame_list_pre) == len(frame_list_post) min_w = 0.0 max_w = 1.0 step = (max_w - min_w) / (len(frame_list_pre)-1) post_w_list = [min_w] + [i * step for i in range(1,len(frame_list_pre)-1)] + [max_w] interpolated_frames = [] for i in range(len(frame_list_pre)): interpolated_frames.append(frame_list_pre[i] * (1-post_w_list[i]) + frame_list_post[i] * post_w_list[i]) return interpolated_frames