# Copyright (2025) Bytedance Ltd. and/or its affiliates # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn import torch.nn.functional as F from .util.blocks import FeatureFusionBlock, _make_scratch def _make_fusion_block(features, use_bn, size=None): return FeatureFusionBlock( features, nn.ReLU(False), deconv=False, bn=use_bn, expand=False, align_corners=True, size=size, ) class ConvBlock(nn.Module): def __init__(self, in_feature, out_feature): super().__init__() self.conv_block = nn.Sequential( nn.Conv2d(in_feature, out_feature, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(out_feature), nn.ReLU(True) ) def forward(self, x): return self.conv_block(x) class DPTHead(nn.Module): def __init__( self, in_channels, features=256, use_bn=False, out_channels=[256, 512, 1024, 1024], use_clstoken=False ): super(DPTHead, self).__init__() self.use_clstoken = use_clstoken self.projects = nn.ModuleList([ nn.Conv2d( in_channels=in_channels, out_channels=out_channel, kernel_size=1, stride=1, padding=0, ) for out_channel in out_channels ]) self.resize_layers = nn.ModuleList([ nn.ConvTranspose2d( in_channels=out_channels[0], out_channels=out_channels[0], kernel_size=4, stride=4, padding=0), nn.ConvTranspose2d( in_channels=out_channels[1], out_channels=out_channels[1], kernel_size=2, stride=2, padding=0), nn.Identity(), nn.Conv2d( in_channels=out_channels[3], out_channels=out_channels[3], kernel_size=3, stride=2, padding=1) ]) if use_clstoken: self.readout_projects = nn.ModuleList() for _ in range(len(self.projects)): self.readout_projects.append( nn.Sequential( nn.Linear(2 * in_channels, in_channels), nn.GELU())) self.scratch = _make_scratch( out_channels, features, groups=1, expand=False, ) self.scratch.stem_transpose = None self.scratch.refinenet1 = _make_fusion_block(features, use_bn) self.scratch.refinenet2 = _make_fusion_block(features, use_bn) self.scratch.refinenet3 = _make_fusion_block(features, use_bn) self.scratch.refinenet4 = _make_fusion_block(features, use_bn) head_features_1 = features head_features_2 = 32 self.scratch.output_conv1 = nn.Conv2d(head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1) self.scratch.output_conv2 = nn.Sequential( nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1), nn.ReLU(True), nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0), nn.ReLU(True), nn.Identity(), ) def forward(self, out_features, patch_h, patch_w): out = [] for i, x in enumerate(out_features): if self.use_clstoken: x, cls_token = x[0], x[1] readout = cls_token.unsqueeze(1).expand_as(x) x = self.readout_projects[i](torch.cat((x, readout), -1)) else: x = x[0] x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w)) x = self.projects[i](x) x = self.resize_layers[i](x) out.append(x) layer_1, layer_2, layer_3, layer_4 = out layer_1_rn = self.scratch.layer1_rn(layer_1) layer_2_rn = self.scratch.layer2_rn(layer_2) layer_3_rn = self.scratch.layer3_rn(layer_3) layer_4_rn = self.scratch.layer4_rn(layer_4) path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:]) path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:]) path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:]) path_1 = self.scratch.refinenet1(path_2, layer_1_rn) out = self.scratch.output_conv1(path_1) out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True) out = self.scratch.output_conv2(out) return out