# Copyright (2025) Bytedance Ltd. and/or its affiliates # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn.functional as F import torch.nn as nn from .dpt import DPTHead from .motion_module.motion_module import TemporalModule from easydict import EasyDict class DPTHeadTemporal(DPTHead): def __init__(self, in_channels, features=256, use_bn=False, out_channels=[256, 512, 1024, 1024], use_clstoken=False, num_frames=32, pe='ape' ): super().__init__(in_channels, features, use_bn, out_channels, use_clstoken) assert num_frames > 0 motion_module_kwargs = EasyDict(num_attention_heads = 8, num_transformer_block = 1, num_attention_blocks = 2, temporal_max_len = num_frames, zero_initialize = True, pos_embedding_type = pe) self.motion_modules = nn.ModuleList([ TemporalModule(in_channels=out_channels[2], **motion_module_kwargs), TemporalModule(in_channels=out_channels[3], **motion_module_kwargs), TemporalModule(in_channels=features, **motion_module_kwargs), TemporalModule(in_channels=features, **motion_module_kwargs) ]) def forward(self, out_features, patch_h, patch_w, frame_length): out = [] for i, x in enumerate(out_features): if self.use_clstoken: x, cls_token = x[0], x[1] readout = cls_token.unsqueeze(1).expand_as(x) x = self.readout_projects[i](torch.cat((x, readout), -1)) else: x = x[0] x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w)).contiguous() B, T = x.shape[0] // frame_length, frame_length x = self.projects[i](x) x = self.resize_layers[i](x) out.append(x) layer_1, layer_2, layer_3, layer_4 = out B, T = layer_1.shape[0] // frame_length, frame_length layer_3 = self.motion_modules[0](layer_3.unflatten(0, (B, T)).permute(0, 2, 1, 3, 4), None, None).permute(0, 2, 1, 3, 4).flatten(0, 1) layer_4 = self.motion_modules[1](layer_4.unflatten(0, (B, T)).permute(0, 2, 1, 3, 4), None, None).permute(0, 2, 1, 3, 4).flatten(0, 1) layer_1_rn = self.scratch.layer1_rn(layer_1) layer_2_rn = self.scratch.layer2_rn(layer_2) layer_3_rn = self.scratch.layer3_rn(layer_3) layer_4_rn = self.scratch.layer4_rn(layer_4) path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:]) path_4 = self.motion_modules[2](path_4.unflatten(0, (B, T)).permute(0, 2, 1, 3, 4), None, None).permute(0, 2, 1, 3, 4).flatten(0, 1) path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:]) path_3 = self.motion_modules[3](path_3.unflatten(0, (B, T)).permute(0, 2, 1, 3, 4), None, None).permute(0, 2, 1, 3, 4).flatten(0, 1) path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:]) path_1 = self.scratch.refinenet1(path_2, layer_1_rn) out = self.scratch.output_conv1(path_1) out = F.interpolate( out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True ) out = self.scratch.output_conv2(out) return out