MinerU / magic_pdf /model /doc_analyze_by_custom_model.py
derful's picture
Upload folder using huggingface_hub
240e0a0 verified
import time
import fitz
import numpy as np
from loguru import logger
from magic_pdf.libs.config_reader import get_local_models_dir, get_device
from magic_pdf.model.model_list import MODEL
import magic_pdf.model as model_config
def dict_compare(d1, d2):
return d1.items() == d2.items()
def remove_duplicates_dicts(lst):
unique_dicts = []
for dict_item in lst:
if not any(
dict_compare(dict_item, existing_dict) for existing_dict in unique_dicts
):
unique_dicts.append(dict_item)
return unique_dicts
def load_images_from_pdf(pdf_bytes: bytes, dpi=200) -> list:
try:
from PIL import Image
except ImportError:
logger.error("Pillow not installed, please install by pip.")
exit(1)
images = []
with fitz.open("pdf", pdf_bytes) as doc:
for index in range(0, doc.page_count):
page = doc[index]
mat = fitz.Matrix(dpi / 72, dpi / 72)
pm = page.get_pixmap(matrix=mat, alpha=False)
# if width or height > 3000 pixels, don't enlarge the image
if pm.width > 3000 or pm.height > 3000:
pm = page.get_pixmap(matrix=fitz.Matrix(1, 1), alpha=False)
img = Image.frombytes("RGB", (pm.width, pm.height), pm.samples)
img = np.array(img)
img_dict = {"img": img, "width": pm.width, "height": pm.height}
images.append(img_dict)
return images
class ModelSingleton:
_instance = None
_models = {}
def __new__(cls, *args, **kwargs):
if cls._instance is None:
cls._instance = super().__new__(cls)
return cls._instance
def get_model(self, ocr: bool, show_log: bool):
key = (ocr, show_log)
if key not in self._models:
self._models[key] = custom_model_init(ocr=ocr, show_log=show_log)
return self._models[key]
def custom_model_init(ocr: bool = False, show_log: bool = False):
model = None
if model_config.__model_mode__ == "lite":
model = MODEL.Paddle
elif model_config.__model_mode__ == "full":
model = MODEL.PEK
if model_config.__use_inside_model__:
model_init_start = time.time()
if model == MODEL.Paddle:
from magic_pdf.model.pp_structure_v2 import CustomPaddleModel
custom_model = CustomPaddleModel(ocr=ocr, show_log=show_log)
elif model == MODEL.PEK:
from magic_pdf.model.pdf_extract_kit import CustomPEKModel
# 从配置文件读取model-dir和device
local_models_dir = get_local_models_dir()
device = get_device()
custom_model = CustomPEKModel(ocr=ocr, show_log=show_log, models_dir=local_models_dir, device=device)
else:
logger.error("Not allow model_name!")
exit(1)
model_init_cost = time.time() - model_init_start
logger.info(f"model init cost: {model_init_cost}")
else:
logger.error("use_inside_model is False, not allow to use inside model")
exit(1)
return custom_model
def doc_analyze(pdf_bytes: bytes, ocr: bool = False, show_log: bool = False):
model_manager = ModelSingleton()
custom_model = model_manager.get_model(ocr, show_log)
images = load_images_from_pdf(pdf_bytes)
model_json = []
doc_analyze_start = time.time()
for index, img_dict in enumerate(images):
img = img_dict["img"]
page_width = img_dict["width"]
page_height = img_dict["height"]
result = custom_model(img)
page_info = {"page_no": index, "height": page_height, "width": page_width}
page_dict = {"layout_dets": result, "page_info": page_info}
model_json.append(page_dict)
doc_analyze_cost = time.time() - doc_analyze_start
logger.info(f"doc analyze cost: {doc_analyze_cost}")
return model_json