MinerU / magic_pdf /model /magic_model.py
derful's picture
Upload folder using huggingface_hub
240e0a0 verified
import json
import math
from magic_pdf.libs.commons import fitz
from loguru import logger
from magic_pdf.libs.commons import join_path
from magic_pdf.libs.coordinate_transform import get_scale_ratio
from magic_pdf.libs.ocr_content_type import ContentType
from magic_pdf.rw.AbsReaderWriter import AbsReaderWriter
from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
from magic_pdf.libs.math import float_gt
from magic_pdf.libs.boxbase import (
_is_in,
bbox_relative_pos,
bbox_distance,
_is_part_overlap,
calculate_overlap_area_in_bbox1_area_ratio,
calculate_iou,
)
from magic_pdf.libs.ModelBlockTypeEnum import ModelBlockTypeEnum
CAPATION_OVERLAP_AREA_RATIO = 0.6
class MagicModel:
"""
每个函数没有得到元素的时候返回空list
"""
def __fix_axis(self):
for model_page_info in self.__model_list:
need_remove_list = []
page_no = model_page_info["page_info"]["page_no"]
horizontal_scale_ratio, vertical_scale_ratio = get_scale_ratio(
model_page_info, self.__docs[page_no]
)
layout_dets = model_page_info["layout_dets"]
for layout_det in layout_dets:
if layout_det.get("bbox") is not None:
# 兼容直接输出bbox的模型数据,如paddle
x0, y0, x1, y1 = layout_det["bbox"]
else:
# 兼容直接输出poly的模型数据,如xxx
x0, y0, _, _, x1, y1, _, _ = layout_det["poly"]
bbox = [
int(x0 / horizontal_scale_ratio),
int(y0 / vertical_scale_ratio),
int(x1 / horizontal_scale_ratio),
int(y1 / vertical_scale_ratio),
]
layout_det["bbox"] = bbox
# 删除高度或者宽度小于等于0的spans
if bbox[2] - bbox[0] <= 0 or bbox[3] - bbox[1] <= 0:
need_remove_list.append(layout_det)
for need_remove in need_remove_list:
layout_dets.remove(need_remove)
def __fix_by_remove_low_confidence(self):
for model_page_info in self.__model_list:
need_remove_list = []
layout_dets = model_page_info["layout_dets"]
for layout_det in layout_dets:
if layout_det["score"] <= 0.05:
need_remove_list.append(layout_det)
else:
continue
for need_remove in need_remove_list:
layout_dets.remove(need_remove)
def __fix_by_remove_high_iou_and_low_confidence(self):
for model_page_info in self.__model_list:
need_remove_list = []
layout_dets = model_page_info["layout_dets"]
for layout_det1 in layout_dets:
for layout_det2 in layout_dets:
if layout_det1 == layout_det2:
continue
if layout_det1["category_id"] in [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
] and layout_det2["category_id"] in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:
if (
calculate_iou(layout_det1["bbox"], layout_det2["bbox"])
> 0.9
):
if layout_det1["score"] < layout_det2["score"]:
layout_det_need_remove = layout_det1
else:
layout_det_need_remove = layout_det2
if layout_det_need_remove not in need_remove_list:
need_remove_list.append(layout_det_need_remove)
else:
continue
else:
continue
for need_remove in need_remove_list:
layout_dets.remove(need_remove)
def __init__(self, model_list: list, docs: fitz.Document):
self.__model_list = model_list
self.__docs = docs
"""为所有模型数据添加bbox信息(缩放,poly->bbox)"""
self.__fix_axis()
"""删除置信度特别低的模型数据(<0.05),提高质量"""
self.__fix_by_remove_low_confidence()
"""删除高iou(>0.9)数据中置信度较低的那个"""
self.__fix_by_remove_high_iou_and_low_confidence()
def __reduct_overlap(self, bboxes):
N = len(bboxes)
keep = [True] * N
for i in range(N):
for j in range(N):
if i == j:
continue
if _is_in(bboxes[i]["bbox"], bboxes[j]["bbox"]):
keep[i] = False
return [bboxes[i] for i in range(N) if keep[i]]
def __tie_up_category_by_distance(
self, page_no, subject_category_id, object_category_id
):
"""
假定每个 subject 最多有一个 object (可以有多个相邻的 object 合并为单个 object),每个 object 只能属于一个 subject
"""
ret = []
MAX_DIS_OF_POINT = 10**9 + 7
# subject 和 object 的 bbox 会合并成一个大的 bbox (named: merged bbox)。 筛选出所有和 merged bbox 有 overlap 且 overlap 面积大于 object 的面积的 subjects。
# 再求出筛选出的 subjects 和 object 的最短距离!
def may_find_other_nearest_bbox(subject_idx, object_idx):
ret = float("inf")
x0 = min(
all_bboxes[subject_idx]["bbox"][0], all_bboxes[object_idx]["bbox"][0]
)
y0 = min(
all_bboxes[subject_idx]["bbox"][1], all_bboxes[object_idx]["bbox"][1]
)
x1 = max(
all_bboxes[subject_idx]["bbox"][2], all_bboxes[object_idx]["bbox"][2]
)
y1 = max(
all_bboxes[subject_idx]["bbox"][3], all_bboxes[object_idx]["bbox"][3]
)
object_area = abs(
all_bboxes[object_idx]["bbox"][2] - all_bboxes[object_idx]["bbox"][0]
) * abs(
all_bboxes[object_idx]["bbox"][3] - all_bboxes[object_idx]["bbox"][1]
)
for i in range(len(all_bboxes)):
if (
i == subject_idx
or all_bboxes[i]["category_id"] != subject_category_id
):
continue
if _is_part_overlap([x0, y0, x1, y1], all_bboxes[i]["bbox"]) or _is_in(
all_bboxes[i]["bbox"], [x0, y0, x1, y1]
):
i_area = abs(
all_bboxes[i]["bbox"][2] - all_bboxes[i]["bbox"][0]
) * abs(all_bboxes[i]["bbox"][3] - all_bboxes[i]["bbox"][1])
if i_area >= object_area:
ret = min(float("inf"), dis[i][object_idx])
return ret
def expand_bbbox(idxes):
x0s = [all_bboxes[idx]["bbox"][0] for idx in idxes]
y0s = [all_bboxes[idx]["bbox"][1] for idx in idxes]
x1s = [all_bboxes[idx]["bbox"][2] for idx in idxes]
y1s = [all_bboxes[idx]["bbox"][3] for idx in idxes]
return min(x0s), min(y0s), max(x1s), max(y1s)
subjects = self.__reduct_overlap(
list(
map(
lambda x: {"bbox": x["bbox"], "score": x["score"]},
filter(
lambda x: x["category_id"] == subject_category_id,
self.__model_list[page_no]["layout_dets"],
),
)
)
)
objects = self.__reduct_overlap(
list(
map(
lambda x: {"bbox": x["bbox"], "score": x["score"]},
filter(
lambda x: x["category_id"] == object_category_id,
self.__model_list[page_no]["layout_dets"],
),
)
)
)
subject_object_relation_map = {}
subjects.sort(
key=lambda x: x["bbox"][0] ** 2 + x["bbox"][1] ** 2
) # get the distance !
all_bboxes = []
for v in subjects:
all_bboxes.append(
{
"category_id": subject_category_id,
"bbox": v["bbox"],
"score": v["score"],
}
)
for v in objects:
all_bboxes.append(
{
"category_id": object_category_id,
"bbox": v["bbox"],
"score": v["score"],
}
)
N = len(all_bboxes)
dis = [[MAX_DIS_OF_POINT] * N for _ in range(N)]
for i in range(N):
for j in range(i):
if (
all_bboxes[i]["category_id"] == subject_category_id
and all_bboxes[j]["category_id"] == subject_category_id
):
continue
dis[i][j] = bbox_distance(all_bboxes[i]["bbox"], all_bboxes[j]["bbox"])
dis[j][i] = dis[i][j]
used = set()
for i in range(N):
# 求第 i 个 subject 所关联的 object
if all_bboxes[i]["category_id"] != subject_category_id:
continue
seen = set()
candidates = []
arr = []
for j in range(N):
pos_flag_count = sum(
list(
map(
lambda x: 1 if x else 0,
bbox_relative_pos(
all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
),
)
)
)
if pos_flag_count > 1:
continue
if (
all_bboxes[j]["category_id"] != object_category_id
or j in used
or dis[i][j] == MAX_DIS_OF_POINT
):
continue
left, right, _, _ = bbox_relative_pos(
all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
) # 由 pos_flag_count 相关逻辑保证本段逻辑准确性
if left or right:
one_way_dis = all_bboxes[i]["bbox"][2] - all_bboxes[i]["bbox"][0]
else:
one_way_dis = all_bboxes[i]["bbox"][3] - all_bboxes[i]["bbox"][1]
if dis[i][j] > one_way_dis:
continue
arr.append((dis[i][j], j))
arr.sort(key=lambda x: x[0])
if len(arr) > 0:
# bug: 离该subject 最近的 object 可能跨越了其它的 subject 。比如 [this subect] [some sbuject] [the nearest objec of subject]
if may_find_other_nearest_bbox(i, arr[0][1]) >= arr[0][0]:
candidates.append(arr[0][1])
seen.add(arr[0][1])
# 已经获取初始种子
for j in set(candidates):
tmp = []
for k in range(i + 1, N):
pos_flag_count = sum(
list(
map(
lambda x: 1 if x else 0,
bbox_relative_pos(
all_bboxes[j]["bbox"], all_bboxes[k]["bbox"]
),
)
)
)
if pos_flag_count > 1:
continue
if (
all_bboxes[k]["category_id"] != object_category_id
or k in used
or k in seen
or dis[j][k] == MAX_DIS_OF_POINT
or dis[j][k] > dis[i][j]
):
continue
is_nearest = True
for l in range(i + 1, N):
if l in (j, k) or l in used or l in seen:
continue
if not float_gt(dis[l][k], dis[j][k]):
is_nearest = False
break
if is_nearest:
nx0, ny0, nx1, ny1 = expand_bbbox(list(seen) + [k])
n_dis = bbox_distance(all_bboxes[i]["bbox"], [nx0, ny0, nx1, ny1])
if float_gt(dis[i][j], n_dis):
continue
tmp.append(k)
seen.add(k)
candidates = tmp
if len(candidates) == 0:
break
# 已经获取到某个 figure 下所有的最靠近的 captions,以及最靠近这些 captions 的 captions 。
# 先扩一下 bbox,
ox0, oy0, ox1, oy1 = expand_bbbox(list(seen) + [i])
ix0, iy0, ix1, iy1 = all_bboxes[i]["bbox"]
# 分成了 4 个截取空间,需要计算落在每个截取空间下 objects 合并后占据的矩形面积
caption_poses = [
[ox0, oy0, ix0, oy1],
[ox0, oy0, ox1, iy0],
[ox0, iy1, ox1, oy1],
[ix1, oy0, ox1, oy1],
]
caption_areas = []
for bbox in caption_poses:
embed_arr = []
for idx in seen:
if (
calculate_overlap_area_in_bbox1_area_ratio(
all_bboxes[idx]["bbox"], bbox
)
> CAPATION_OVERLAP_AREA_RATIO
):
embed_arr.append(idx)
if len(embed_arr) > 0:
embed_x0 = min([all_bboxes[idx]["bbox"][0] for idx in embed_arr])
embed_y0 = min([all_bboxes[idx]["bbox"][1] for idx in embed_arr])
embed_x1 = max([all_bboxes[idx]["bbox"][2] for idx in embed_arr])
embed_y1 = max([all_bboxes[idx]["bbox"][3] for idx in embed_arr])
caption_areas.append(
int(abs(embed_x1 - embed_x0) * abs(embed_y1 - embed_y0))
)
else:
caption_areas.append(0)
subject_object_relation_map[i] = []
if max(caption_areas) > 0:
max_area_idx = caption_areas.index(max(caption_areas))
caption_bbox = caption_poses[max_area_idx]
for j in seen:
if (
calculate_overlap_area_in_bbox1_area_ratio(
all_bboxes[j]["bbox"], caption_bbox
)
> CAPATION_OVERLAP_AREA_RATIO
):
used.add(j)
subject_object_relation_map[i].append(j)
for i in sorted(subject_object_relation_map.keys()):
result = {
"subject_body": all_bboxes[i]["bbox"],
"all": all_bboxes[i]["bbox"],
"score": all_bboxes[i]["score"],
}
if len(subject_object_relation_map[i]) > 0:
x0 = min(
[all_bboxes[j]["bbox"][0] for j in subject_object_relation_map[i]]
)
y0 = min(
[all_bboxes[j]["bbox"][1] for j in subject_object_relation_map[i]]
)
x1 = max(
[all_bboxes[j]["bbox"][2] for j in subject_object_relation_map[i]]
)
y1 = max(
[all_bboxes[j]["bbox"][3] for j in subject_object_relation_map[i]]
)
result["object_body"] = [x0, y0, x1, y1]
result["all"] = [
min(x0, all_bboxes[i]["bbox"][0]),
min(y0, all_bboxes[i]["bbox"][1]),
max(x1, all_bboxes[i]["bbox"][2]),
max(y1, all_bboxes[i]["bbox"][3]),
]
ret.append(result)
total_subject_object_dis = 0
# 计算已经配对的 distance 距离
for i in subject_object_relation_map.keys():
for j in subject_object_relation_map[i]:
total_subject_object_dis += bbox_distance(
all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
)
# 计算未匹配的 subject 和 object 的距离(非精确版)
with_caption_subject = set(
[
key
for key in subject_object_relation_map.keys()
if len(subject_object_relation_map[i]) > 0
]
)
for i in range(N):
if all_bboxes[i]["category_id"] != object_category_id or i in used:
continue
candidates = []
for j in range(N):
if (
all_bboxes[j]["category_id"] != subject_category_id
or j in with_caption_subject
):
continue
candidates.append((dis[i][j], j))
if len(candidates) > 0:
candidates.sort(key=lambda x: x[0])
total_subject_object_dis += candidates[0][1]
with_caption_subject.add(j)
return ret, total_subject_object_dis
def get_imgs(self, page_no: int):
figure_captions, _ = self.__tie_up_category_by_distance(
page_no, 3, 4
)
return [
{
"bbox": record["all"],
"img_body_bbox": record["subject_body"],
"img_caption_bbox": record.get("object_body", None),
"score": record["score"],
}
for record in figure_captions
]
def get_tables(
self, page_no: int
) -> list: # 3个坐标, caption, table主体,table-note
with_captions, _ = self.__tie_up_category_by_distance(page_no, 5, 6)
with_footnotes, _ = self.__tie_up_category_by_distance(page_no, 5, 7)
ret = []
N, M = len(with_captions), len(with_footnotes)
assert N == M
for i in range(N):
record = {
"score": with_captions[i]["score"],
"table_caption_bbox": with_captions[i].get("object_body", None),
"table_body_bbox": with_captions[i]["subject_body"],
"table_footnote_bbox": with_footnotes[i].get("object_body", None),
}
x0 = min(with_captions[i]["all"][0], with_footnotes[i]["all"][0])
y0 = min(with_captions[i]["all"][1], with_footnotes[i]["all"][1])
x1 = max(with_captions[i]["all"][2], with_footnotes[i]["all"][2])
y1 = max(with_captions[i]["all"][3], with_footnotes[i]["all"][3])
record["bbox"] = [x0, y0, x1, y1]
ret.append(record)
return ret
def get_equations(self, page_no: int) -> list: # 有坐标,也有字
inline_equations = self.__get_blocks_by_type(
ModelBlockTypeEnum.EMBEDDING.value, page_no, ["latex"]
)
interline_equations = self.__get_blocks_by_type(
ModelBlockTypeEnum.ISOLATED.value, page_no, ["latex"]
)
interline_equations_blocks = self.__get_blocks_by_type(
ModelBlockTypeEnum.ISOLATE_FORMULA.value, page_no
)
return inline_equations, interline_equations, interline_equations_blocks
def get_discarded(self, page_no: int) -> list: # 自研模型,只有坐标
blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.ABANDON.value, page_no)
return blocks
def get_text_blocks(self, page_no: int) -> list: # 自研模型搞的,只有坐标,没有字
blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.PLAIN_TEXT.value, page_no)
return blocks
def get_title_blocks(self, page_no: int) -> list: # 自研模型,只有坐标,没字
blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.TITLE.value, page_no)
return blocks
def get_ocr_text(self, page_no: int) -> list: # paddle 搞的,有字也有坐标
text_spans = []
model_page_info = self.__model_list[page_no]
layout_dets = model_page_info["layout_dets"]
for layout_det in layout_dets:
if layout_det["category_id"] == "15":
span = {
"bbox": layout_det["bbox"],
"content": layout_det["text"],
}
text_spans.append(span)
return text_spans
def get_all_spans(self, page_no: int) -> list:
def remove_duplicate_spans(spans):
new_spans = []
for span in spans:
if not any(span == existing_span for existing_span in new_spans):
new_spans.append(span)
return new_spans
all_spans = []
model_page_info = self.__model_list[page_no]
layout_dets = model_page_info["layout_dets"]
allow_category_id_list = [3, 5, 13, 14, 15]
"""当成span拼接的"""
# 3: 'image', # 图片
# 5: 'table', # 表格
# 13: 'inline_equation', # 行内公式
# 14: 'interline_equation', # 行间公式
# 15: 'text', # ocr识别文本
for layout_det in layout_dets:
category_id = layout_det["category_id"]
if category_id in allow_category_id_list:
span = {"bbox": layout_det["bbox"], "score": layout_det["score"]}
if category_id == 3:
span["type"] = ContentType.Image
elif category_id == 5:
span["type"] = ContentType.Table
elif category_id == 13:
span["content"] = layout_det["latex"]
span["type"] = ContentType.InlineEquation
elif category_id == 14:
span["content"] = layout_det["latex"]
span["type"] = ContentType.InterlineEquation
elif category_id == 15:
span["content"] = layout_det["text"]
span["type"] = ContentType.Text
all_spans.append(span)
return remove_duplicate_spans(all_spans)
def get_page_size(self, page_no: int): # 获取页面宽高
# 获取当前页的page对象
page = self.__docs[page_no]
# 获取当前页的宽高
page_w = page.rect.width
page_h = page.rect.height
return page_w, page_h
def __get_blocks_by_type(
self, type: int, page_no: int, extra_col: list[str] = []
) -> list:
blocks = []
for page_dict in self.__model_list:
layout_dets = page_dict.get("layout_dets", [])
page_info = page_dict.get("page_info", {})
page_number = page_info.get("page_no", -1)
if page_no != page_number:
continue
for item in layout_dets:
category_id = item.get("category_id", -1)
bbox = item.get("bbox", None)
if category_id == type:
block = {
"bbox": bbox,
"score": item.get("score"),
}
for col in extra_col:
block[col] = item.get(col, None)
blocks.append(block)
return blocks
def get_model_list(self, page_no):
return self.__model_list[page_no]
if __name__ == "__main__":
drw = DiskReaderWriter(r"D:/project/20231108code-clean")
if 0:
pdf_file_path = r"linshixuqiu\19983-00.pdf"
model_file_path = r"linshixuqiu\19983-00_new.json"
pdf_bytes = drw.read(pdf_file_path, AbsReaderWriter.MODE_BIN)
model_json_txt = drw.read(model_file_path, AbsReaderWriter.MODE_TXT)
model_list = json.loads(model_json_txt)
write_path = r"D:\project\20231108code-clean\linshixuqiu\19983-00"
img_bucket_path = "imgs"
img_writer = DiskReaderWriter(join_path(write_path, img_bucket_path))
pdf_docs = fitz.open("pdf", pdf_bytes)
magic_model = MagicModel(model_list, pdf_docs)
if 1:
model_list = json.loads(
drw.read("/opt/data/pdf/20240418/j.chroma.2009.03.042.json")
)
pdf_bytes = drw.read(
"/opt/data/pdf/20240418/j.chroma.2009.03.042.pdf", AbsReaderWriter.MODE_BIN
)
pdf_docs = fitz.open("pdf", pdf_bytes)
magic_model = MagicModel(model_list, pdf_docs)
for i in range(7):
print(magic_model.get_imgs(i))