deshetti commited on
Commit
7efb4bc
1 Parent(s): f690df8

update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -0
app.py CHANGED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from peft import PeftModel, PeftConfig
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer
4
+
5
+ peft_model_id = "LLMPrompGenAI/LLMPromptGen-AI"
6
+ model = AutoModelForCausalLM.from_pretrained(peft_model_id, return_dict=True, device_map='auto')
7
+ # tokenizer = AutoTokenizer.from_pretrained(peft_model_id)
8
+ mixtral_tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
9
+
10
+ def input_from_text(text):
11
+ return "<s>[INST]Use the provided input to create an instruction that could have been used to generate the response with an LLM.\n" + text + "[/INST]"
12
+
13
+ def get_instruction(text):
14
+ inputs = mixtral_tokenizer(input_from_text(text), return_tensors="pt")
15
+
16
+ outputs = model.generate(
17
+ **inputs,
18
+ max_new_tokens=150,
19
+ generation_kwargs={"repetition_penalty" : 1.7}
20
+ )
21
+ print(mixtral_tokenizer.decode(outputs[0], skip_special_tokens=True))
22
+ return mixtral_tokenizer.decode(outputs[0], skip_special_tokens=True).split("[/INST]")[1]
23
+
24
+ if __name__ == "__main__":
25
+ # make a gradio interface
26
+ import gradio as gr
27
+
28
+ gr.Interface(
29
+ get_instruction,
30
+ [
31
+ gr.Textbox(lines=10, label="LLM Response"),
32
+ ],
33
+ gr.Textbox(label="LLM Predicted Prompt"),
34
+ title="LLM-Prompt-Predictor",
35
+ description="Prompt Predictor Based on LLM Response",
36
+ ).launch()