"""The model used in this Space alters the underlying Stable Diffusion model available at https://huggingface.co/CompVis/stable-diffusion-v1-4 through the addition of new embedding vectors in order to capture the likeness of the Determined AI logo. These alternations are fully captured in the learned_embeddings_dict.pt pickle file in the root of the repository.""" import pathlib import os from PIL import Image import gradio as gr import torch from diffusers import StableDiffusionPipeline import utils use_auth_token = os.environ["HF_AUTH_TOKEN"] NSFW_IMAGE = Image.open("nsfw.png") BATCH_SIZE = 2 # Instantiate the pipeline. device, revision, torch_dtype = ( ("cuda", "fp16", torch.float16) if torch.cuda.is_available() else ("cpu", "main", torch.float32) ) pipeline = StableDiffusionPipeline.from_pretrained( pretrained_model_name_or_path="CompVis/stable-diffusion-v1-4", use_auth_token=use_auth_token, revision=revision, torch_dtype=torch_dtype, ).to(device) # Load in the new concepts. CONCEPT_PATH = pathlib.Path("learned_embeddings_dict.pt") learned_embeddings_dict = torch.load(CONCEPT_PATH) concept_to_dummy_strs_map = {} for concept_token, embedding_dict in learned_embeddings_dict.items(): initializer_strs = embedding_dict["initializer_strs"] learned_embeddings = embedding_dict["learned_embeddings"] ( initializer_ids, dummy_placeholder_ids, dummy_placeholder_strs, ) = utils.add_new_tokens_to_tokenizer( concept_str=concept_token, initializer_strs=initializer_strs, tokenizer=pipeline.tokenizer, ) pipeline.text_encoder.resize_token_embeddings(len(pipeline.tokenizer)) token_embeddings = pipeline.text_encoder.get_input_embeddings().weight.data for d_id, tensor in zip(dummy_placeholder_ids, learned_embeddings): token_embeddings[d_id] = tensor concept_to_dummy_strs_map[concept_token] = dummy_placeholder_strs def replace_concept_strs(text: str): for concept_token, dummy_strs in concept_to_dummy_strs_map.items(): text = text.replace(concept_token, dummy_strs) return text def inference(prompt: str, guidance_scale: int, num_inference_steps: int, seed: int): if not prompt: raise ValueError("Please enter a prompt.") if 'det-logo' not in prompt: raise ValueError('"det-logo" must be included in the prompt.') prompt = replace_concept_strs(prompt) generator = torch.Generator(device=device).manual_seed(seed) output = pipeline( prompt=[prompt] * BATCH_SIZE, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, generator=generator, ) img_list, nsfw_list = output.images, output.nsfw_content_detected filtered_imgs = [ img if not nsfw else NSFW_IMAGE for img, nsfw in zip(img_list, nsfw_list) ] return filtered_imgs css = """ .gradio-container { font-family: 'Roboto', sans-serif; background-color: white !important; font-color: black !important; } .flex-grow { font-family: 'Roboto', sans-serif; background-color: white !important; font-color: black !important; } .font-mono { font-family: 'Roboto', sans-serif; background-color: white !important; font-color: black !important; } .gr-padded { font-family: 'Roboto', sans-serif; background-color: white !important; font-color: black !important; color: black !important; } .bg-gray-700 { font-family: 'Roboto', sans-serif; background-color: white !important; font-color: black !important; color: white !important; } .gr-box { font-family: 'Roboto', sans-serif; background-color: white !important; font-color: black !important; color: black !important; } .h-6 { font-family: 'Roboto', sans-serif; background-color: white !important; font-color: black !important; } .h-6 { font-family: 'Roboto', sans-serif; background-color: white !important; font-color: black !important; } .gr-samples-gallery { font-family: 'Roboto', sans-serif; background-color: white !important; font-color: black !important; color: black !important; } .gr-sample-textbox:hover { font-family: 'Roboto', sans-serif; background-color: #BAD7DF !important; font-color: black !important; color: black !important; } h1 { font-family: 'Roboto', sans-serif; color: black !important; } .text-gray-500 { font-family: 'Roboto', sans-serif; color: black !important; } .gr-button { color: white !important; border-color: black; background: white !important; } .flex-wrap { color: white !important; border-color: white !important; background: white !important; } .grow-0 { color: black !important; border-color: black; background: white !important; } .grow-0:hover { color: black !important; border-color: black; background: #BAD7DF !important; } input[type='range'] { accent-color: white; } .dark input[type='range'] { accent-color: #dfdfdf; } .container { max-width: 730px; margin: auto; padding-top: 1.5rem; background: white; } #gallery { margin-bottom: 1rem; margin-left: auto; margin-right: auto; border-bottom-right-radius: .5rem !important; border-bottom-left-radius: .5rem !important; } #gallery>div>.h-full { min-height: 20rem; } .details:hover { text-decoration: underline; } .gr-button { white-space: nowrap; } .gr-button:focus { border-color: rgb(147 197 253 / var(--tw-border-opacity)); outline: none; box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); --tw-border-opacity: 1; --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); --tw-ring-opacity: .5; } #advanced-btn, #license-btn { font-size: .7rem !important; line-height: 19px; margin-top: 12px; margin-bottom: 12px; padding: 2px 8px; border-radius: 14px !important; background: white !important; color: black !important; } #license-btn:hover { color: black !important; border-color: black; background: #BAD7DF !important; } #advanced-btn:hover { color: black !important; border-color: black; background: #BAD7DF !important; } #advanced-option`s { display: none; margin-bottom: 20px; } #license-display { display: none; margin-bottom: 20px; } #component-1 { max-height: 3rem; margin-bottom: 1rem; margin-left: auto; margin-right: auto; border-bottom-right-radius: .5rem !important; border-bottom-left-radius: .5rem !important; } #component-21 { max-height: 2rem; } .footer { margin-bottom: 0px; margin-top: 0px; text-align: center; border-bottom: 1px solid #e5e5e5; background: white !important; color: black !important; } .footer>p { font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white !important; } .dark .footer { border-color: #303030; } .dark .footer>p { background: #0b0f19; } .acknowledgments h4{ margin: 1.25em 0 .25em 0; font-weight: bold; font-size: 115%; } #container-advanced-btns{ display: flex; flex-wrap: wrap; justify-content: space-between; align-items: center; } #container-license-btns{ margin: 1.25em 0 .25em 0; display: flex; flex-wrap: wrap; justify-content: space-between; align-items: center; } .animate-spin { animation: spin 1s linear infinite; } @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } .gr-form{ flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0; } #prompt-container{ gap: 0; } """ block = gr.Blocks(css=css) examples = [ [ "A surrealist oil painting by Salvador Dali of a det-logo using soft, blended colors", # 4, # 45, # 7.5, # 1024, ], [ "Beautiful tarot illustration of a det-logo, in the style of james jean and victo ngai, mystical colors, trending on artstation", # 4, # 45,` # 7, # 1024, ], [ "Black and white ink doodle illustration of an overgrown det-logo, style by peter deligdisch, peterdraws", # 4, # 45, # 7, # 1024, ], ] with block: gr.HTML( """