Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,7 @@ def food_not_food_classifier(text: str) -> Dict[str, float]:
|
|
10 |
# Set up text classification pipeline
|
11 |
food_not_food_classifier = pipeline(task="text-classification",
|
12 |
# Because our model is on Hugging Face already, we can pass in the model name directly
|
13 |
-
model="devagonal/bert-f1-durga-muhammad", # link to model on HF Hub
|
14 |
device="cuda" if torch.cuda.is_available() else "cpu",
|
15 |
top_k=None) # return all possible scores (not just top-1)
|
16 |
|
@@ -34,7 +34,7 @@ label1 = muhammad
|
|
34 |
demo = gr.Interface(fn=food_not_food_classifier,
|
35 |
inputs="text",
|
36 |
outputs=gr.Label(num_top_classes=2), # show top 2 classes (that's all we have)
|
37 |
-
title="Bert F1 Durga Muhammad",
|
38 |
description=description,
|
39 |
examples=[["siapakah durga"],
|
40 |
["siapakah muhammad"]])
|
|
|
10 |
# Set up text classification pipeline
|
11 |
food_not_food_classifier = pipeline(task="text-classification",
|
12 |
# Because our model is on Hugging Face already, we can pass in the model name directly
|
13 |
+
model="devagonal/bert-f1-durga-muhammad-c", # link to model on HF Hub
|
14 |
device="cuda" if torch.cuda.is_available() else "cpu",
|
15 |
top_k=None) # return all possible scores (not just top-1)
|
16 |
|
|
|
34 |
demo = gr.Interface(fn=food_not_food_classifier,
|
35 |
inputs="text",
|
36 |
outputs=gr.Label(num_top_classes=2), # show top 2 classes (that's all we have)
|
37 |
+
title="Bert F1 Durga Muhammad c",
|
38 |
description=description,
|
39 |
examples=[["siapakah durga"],
|
40 |
["siapakah muhammad"]])
|