devaprobs's picture
Update app.py
f64ba61 verified
import streamlit as st
from transformers import pipeline
# Load the pre-trained model for inference
model_name = "devaprobs/hate-speech-detection-using-amharic-language"
classifier = pipeline("text-classification", model=model_name)
# Configure the Streamlit page
st.set_page_config(page_title="Amharic Hate Speech Detector", page_icon="๐Ÿ•ต๏ธโ€โ™‚๏ธ", layout="centered")
# Set default background color
default_bg_color = "#f0f2f6"
bg_color = default_bg_color
# Add a stylish header with a logo
st.markdown(
"""
<div style="text-align:center">
<h1 style="color:#1F618D;">Amharic Hate Speech Detector ๐Ÿ•ต๏ธโ€โ™‚๏ธ</h1>
<p style="font-size:20px; color:#555;">Type an Amharic sentence and let our model analyze it!</p>
</div>
""",
unsafe_allow_html=True
)
# Input text box for user to enter Amharic text
user_input = st.text_area("Enter Amharic text here:", height=150, placeholder="แˆแˆณแˆŒ: แŠขแ‰ตแ‹ฎแŒตแ‹ซ แˆˆแ‹˜แˆ‹แˆˆแˆ แ‰ตแŠ‘แˆญ...")
# Submit button for classification
if st.button("Analyze Text ๐Ÿš€"):
if user_input:
# Get the classification result
result = classifier(user_input)
label = result[0]['label']
score = result[0]['score']
# Determine if text is hate speech and update color/background
if label == "LABEL_0":
prediction = "Normal Text ๐ŸŸข"
color = "#28a745"
else:
prediction = "Hate Speech Detected ๐Ÿ”ด"
color = "#dc3545"
bg_color = "#FFBABA" # Update background to a red color for hate speech
# Display warning
st.warning("โš ๏ธ Warning: Hate Speech Detected! โš ๏ธ")
# Apply the background color dynamically
st.markdown(
f"""
<style>
body {{ background-color: {bg_color}; }}
.stAlert {{ text-align: center; }}
</style>
""",
unsafe_allow_html=True
)
# Display the result with styled message
st.markdown(f"<h2 style='text-align: center; color: {color};'>{prediction}</h2>", unsafe_allow_html=True)
else:
st.warning("Please enter some text to analyze.")