from transformers import pipeline import gradio as gr models = { 'devngho/ko_edu_classifier_v2_lemon-mint_LaBSE-EnKo-Nano-Preview-v0.3': pipeline("text-classification", model="devngho/ko_edu_classifier_v2_lemon-mint_LaBSE-EnKo-Nano-Preview-v0.3"), 'devngho/ko_edu_classifier_v2_LaBSE': pipeline("text-classification", model="devngho/ko_edu_classifier_v2_LaBSE") } import gradio as gr def evaluate_model(input_text): return [model(input_text) for model in models.values()] # Gradio interface with gr.Blocks() as demo: input_text = gr.Textbox(label="Input Text") submit_button = gr.Button("Evaluate") output_scores = [gr.Number(f'Score by {name}') for name in models.keys()] # Action to perform on button click submit_button.click(evaluate_model, inputs=input_text, outputs=output_scores) # Launch the app demo.launch()