Spaces:
Runtime error
Runtime error
File size: 2,892 Bytes
3ad1541 51360e6 3ad1541 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
import torch
from PIL import Image
from RealESRGAN import RealESRGAN
import gradio as gr
import logging
from telegram.ext import Updater, CommandHandler, MessageHandler, Filters, CallbackContext
from telegram import Update
logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
level=logging.INFO)
# Your API Token
TOKEN = "6231949511:AAH7-oU213cfrGYcfIMeaYOQUDf9kZoXc_0"
# Initialize the Updater
updater = Updater(token=TOKEN, use_context=True)
dispatcher = updater.dispatcher
# Define a command handler
def start(update: Update, context: CallbackContext):
context.bot.send_message(chat_id=update.effective_chat.id, text="Hello! I'm your bot. How can I help you?")
# Register the command handler
start_handler = CommandHandler('start', start)
dispatcher.add_handler(start_handler)
# Define a function to handle user messages
def echo(update: Update, context: CallbackContext):
context.bot.send_message(chat_id=update.effective_chat.id, text=update.message.text)
# Register the message handler
message_handler = MessageHandler(Filters.text & ~Filters.command, echo)
dispatcher.add_handler(message_handler)
# Start the bot
updater.start_polling()
# Run the bot until you send a signal to stop
updater.idle()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model2 = RealESRGAN(device, scale=2)
model2.load_weights('weights/RealESRGAN_x2.pth', download=True)
model4 = RealESRGAN(device, scale=4)
model4.load_weights('weights/RealESRGAN_x4.pth', download=True)
model8 = RealESRGAN(device, scale=8)
model8.load_weights('weights/RealESRGAN_x8.pth', download=True)
def inference(image, size):
if size == '2x':
result = model2.predict(image.convert('RGB'))
elif size == '4x':
result = model4.predict(image.convert('RGB'))
else:
result = model8.predict(image.convert('RGB'))
if torch.cuda.is_available():
torch.cuda.empty_cache()
return result
title = "Face Real ESRGAN UpScale: 2x 4x 8x"
description = "This is an unofficial demo for Real-ESRGAN. Scales the resolution of a photo. This model shows better results on faces compared to the original version.<br>Telegram BOT: https://t.me/restoration_photo_bot"
article = "<div style='text-align: center;'>Twitter <a href='https://twitter.com/DoEvent' target='_blank'>Max Skobeev</a> | <a href='https://huggingface.co/sberbank-ai/Real-ESRGAN' target='_blank'>Model card</a>/<div>"
gr.Interface(inference,
[gr.Image(type="pil"),
gr.Radio(['2x', '4x', '8x'],
type="value",
value='2x',
label='Resolution model')],
gr.Image(type="pil", label="Output"),
title=title,
description=description,
article=article,
examples=[['groot.jpeg', "2x"]],
allow_flagging='never',
cache_examples=False,
).queue(concurrency_count=1).launch(show_error=True)
|