import torch from PIL import Image from RealESRGAN import RealESRGAN import gradio as gr import logging from telegram.ext import Updater, CommandHandler, MessageHandler, Filters, CallbackContext from telegram import Update logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO) # Your API Token TOKEN = "6231949511:AAH7-oU213cfrGYcfIMeaYOQUDf9kZoXc_0" # Initialize the Updater updater = Updater(token=TOKEN, use_context=True) dispatcher = updater.dispatcher # Define a command handler def start(update: Update, context: CallbackContext): context.bot.send_message(chat_id=update.effective_chat.id, text="Hello! I'm your bot. How can I help you?") # Register the command handler start_handler = CommandHandler('start', start) dispatcher.add_handler(start_handler) # Define a function to handle user messages def echo(update: Update, context: CallbackContext): context.bot.send_message(chat_id=update.effective_chat.id, text=update.message.text) # Register the message handler message_handler = MessageHandler(Filters.text & ~Filters.command, echo) dispatcher.add_handler(message_handler) # Start the bot updater.start_polling() # Run the bot until you send a signal to stop updater.idle() device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model2 = RealESRGAN(device, scale=2) model2.load_weights('weights/RealESRGAN_x2.pth', download=True) model4 = RealESRGAN(device, scale=4) model4.load_weights('weights/RealESRGAN_x4.pth', download=True) model8 = RealESRGAN(device, scale=8) model8.load_weights('weights/RealESRGAN_x8.pth', download=True) def inference(image, size): if size == '2x': result = model2.predict(image.convert('RGB')) elif size == '4x': result = model4.predict(image.convert('RGB')) else: result = model8.predict(image.convert('RGB')) if torch.cuda.is_available(): torch.cuda.empty_cache() return result title = "Face Real ESRGAN UpScale: 2x 4x 8x" description = "This is an unofficial demo for Real-ESRGAN. Scales the resolution of a photo. This model shows better results on faces compared to the original version.
Telegram BOT: https://t.me/restoration_photo_bot" article = "
Twitter Max Skobeev | Model card/
" gr.Interface(inference, [gr.Image(type="pil"), gr.Radio(['2x', '4x', '8x'], type="value", value='2x', label='Resolution model')], gr.Image(type="pil", label="Output"), title=title, description=description, article=article, examples=[['groot.jpeg', "2x"]], allow_flagging='never', cache_examples=False, ).queue(concurrency_count=1).launch(show_error=True)