dhanushreddy29 commited on
Commit
e79863e
·
1 Parent(s): 0f67bbb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -4
app.py CHANGED
@@ -30,10 +30,36 @@ def segmentImage(img_path):
30
  img = cv2.dilate(img, kernel, iterations=1)
31
  img = ndimage.binary_fill_holes(img).astype(int)
32
  labels, nlabels = ndimage.label(img)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  colors = np.random.randint(0, 255, (nlabels + 1, 3))
34
  colors[0] = 0
35
  img_color = colors[labels]
36
- return img_color
37
 
38
  def predict_segmentation(img):
39
  gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
@@ -45,11 +71,11 @@ def predict_segmentation(img):
45
  temp_file = 'temp.png'
46
  output_image.save(temp_file)
47
  # Call the segmentImage function
48
- segmented_image = segmentImage(temp_file)
49
- return output_image, segmented_image
50
 
51
  input_image = gr.inputs.Image()
52
  output_image1 = gr.outputs.Image(type='pil')
53
  output_image2 = gr.outputs.Image(type='pil')
54
- app = gr.Interface(fn=predict_segmentation, inputs=input_image, outputs=[output_image1, output_image2], title='Microstructure Segmentation', description='Segment the input image into grain and background.')
55
  app.launch()
 
30
  img = cv2.dilate(img, kernel, iterations=1)
31
  img = ndimage.binary_fill_holes(img).astype(int)
32
  labels, nlabels = ndimage.label(img)
33
+
34
+ # Get grain sizes
35
+ sizes = ndimage.sum(img, labels, range(nlabels + 1))
36
+ scale_factor = 3072 / 1152
37
+ c = 0.4228320313
38
+ # Divide sizes by pixel_to_micrometer to get the sizes in micrometers and store them in a list new_sizes
39
+ new_sizes = [size * scale_factor * scale_factor * c * c for size in sizes]
40
+ # Round the grain sizes to 2 decimal places
41
+ new_sizes = [round(size, 2) for size in new_sizes]
42
+ gradient_img = np.zeros((img.shape[0], img.shape[1], 3), np.uint8)
43
+ colors = []
44
+ for i in range(len(new_sizes)):
45
+ if new_sizes[i] < 250 * c * c:
46
+ colors.append((255, 255, 255))
47
+ elif new_sizes[i] < 7500 * c * c:
48
+ colors.append((2, 106, 248))
49
+ elif new_sizes[i] < 20000 * c * c:
50
+ colors.append((0, 255, 107))
51
+ elif new_sizes[i] < 45000 * c * c:
52
+ colors.append((255, 201, 60))
53
+ else:
54
+ colors.append((255, 0, 0))
55
+ for i in range(img.shape[0]):
56
+ for j in range(img.shape[1]):
57
+ if labels[i][j] != 0:
58
+ gradient_img[i][j] = colors[labels[i][j]]
59
  colors = np.random.randint(0, 255, (nlabels + 1, 3))
60
  colors[0] = 0
61
  img_color = colors[labels]
62
+ return img_color, gradient_img
63
 
64
  def predict_segmentation(img):
65
  gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 
71
  temp_file = 'temp.png'
72
  output_image.save(temp_file)
73
  # Call the segmentImage function
74
+ segmented_image, gradient_image = segmentImage(temp_file)
75
+ return output_image, segmented_image, gradient_image
76
 
77
  input_image = gr.inputs.Image()
78
  output_image1 = gr.outputs.Image(type='pil')
79
  output_image2 = gr.outputs.Image(type='pil')
80
+ app = gr.Interface(fn=predict_segmentation, inputs=input_image, outputs=[output_image1, output_image2, output_image3], title='Microstructure Segmentation', description='Segment the input image into grain and background.')
81
  app.launch()