File size: 10,260 Bytes
5d0beb6
 
a8a11ec
 
 
 
 
cabd05c
a8a11ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1d13c5
a8a11ec
d1d13c5
a8a11ec
d1d13c5
a8a11ec
d1d13c5
a8a11ec
c39860a
 
6885922
 
 
 
 
a8a11ec
c39860a
 
 
 
 
 
 
a8a11ec
 
 
724beaa
 
 
6cf5a6c
970a116
 
a8a11ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cabd05c
 
a8a11ec
 
 
 
 
 
 
cabd05c
 
 
5d0beb6
 
 
77cb405
a8a11ec
cabd05c
 
 
5d0beb6
 
 
 
a8a11ec
 
 
 
77cb405
a8a11ec
 
 
 
 
 
77cb405
a8a11ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6885922
a8a11ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6885922
a8a11ec
6885922
a8a11ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import os

import gradio as gr
import numpy as np
import torch
from mobile_sam import SamAutomaticMaskGenerator, SamPredictor, sam_model_registry
from PIL import ImageDraw

from utils.tools import box_prompt, format_results, point_prompt
from utils.tools_gradio import fast_process

# Most of our demo code is from [FastSAM Demo](https://huggingface.co/spaces/An-619/FastSAM). Huge thanks for AN-619.

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Load the pre-trained model
sam_checkpoint = "./mobile_sam.pt"
model_type = "vit_t"

mobile_sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
mobile_sam = mobile_sam.to(device=device)
mobile_sam.eval()

mask_generator = SamAutomaticMaskGenerator(mobile_sam)
predictor = SamPredictor(mobile_sam)

# Description
title = "<center><strong><font size='8'>Faster Segment Anything(MobileSAM)<font></strong></center>"

description_e = """This is a demo of [Faster Segment Anything(MobileSAM) Model](https://github.com/ChaoningZhang/MobileSAM).

                   We will provide box mode soon. 

                   Enjoy!
                
              """

description_p = """##This is a demo of [Faster Segment Anything(MobileSAM) Model](https://github.com/ChaoningZhang/MobileSAM).
                # Instructions for point mode

                0. Restart by click the Restart button
                1. Select a point with Add Mask for the foreground (Must)
                2. Select a point with Remove Area for the background (Optional)
                3. Click the Start Segmenting.

                - Github [link](https://github.com/ChaoningZhang/MobileSAM)
                - Model Card [link](https://huggingface.co/dhkim2810/MobileSAM)

                We will provide box mode soon. 

                Enjoy!

              """

examples = [
    ["assets/picture4.jpg"],
    ["assets/picture5.jpg"],
    ["assets/picture6.jpg"],
    ["assets/picture3.jpg"],
    ["assets/picture1.jpg"],
    ["assets/picture2.jpg"],
]

default_example = examples[0]

css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"


@torch.no_grad()
def segment_everything(
    image,
    input_size=1024,
    better_quality=False,
    withContours=True,
    use_retina=True,
    mask_random_color=True,
):
    global mask_generator

    input_size = int(input_size)
    w, h = image.size
    scale = input_size / max(w, h)
    new_w = int(w * scale)
    new_h = int(h * scale)
    image = image.resize((new_w, new_h))

    nd_image = np.array(image)
    annotations = mask_generator.generate(nd_image)

    fig = fast_process(
        annotations=annotations,
        image=image,
        device=device,
        scale=(1024 // input_size),
        better_quality=better_quality,
        mask_random_color=mask_random_color,
        bbox=None,
        use_retina=use_retina,
        withContours=withContours,
    )
    return fig


def segment_with_points(
    image,
    input_size=1024,
    better_quality=False,
    withContours=True,
    use_retina=True,
    mask_random_color=True,
):
    global global_points
    global global_point_label

    print("Original Image : ", image.size)

    input_size = int(input_size)
    w, h = image.size
    scale = input_size / max(w, h)
    new_w = int(w * scale)
    new_h = int(h * scale)
    image = image.resize((new_w, new_h))

    print("Scaled Image : ", image.size)
    print("Scale : ", scale)

    scaled_points = np.array(
        [[int(x * scale) for x in point] for point in global_points]
    )
    scaled_point_label = np.array(global_point_label)

    print(scaled_points, scaled_points is not None)
    print(scaled_point_label, scaled_point_label is not None)

    if scaled_points.size == 0 and scaled_point_label.size == 0:
        print("No points selected")
        return image, image

    nd_image = np.array(image)
    predictor.set_image(nd_image)
    masks, scores, logits = predictor.predict(
        point_coords=scaled_points,
        point_labels=scaled_point_label,
        multimask_output=True,
    )

    results = format_results(masks, scores, logits, 0)

    annotations, _ = point_prompt(
        results, scaled_points, scaled_point_label, new_h, new_w
    )
    annotations = np.array([annotations])

    fig = fast_process(
        annotations=annotations,
        image=image,
        device=device,
        scale=(1024 // input_size),
        better_quality=better_quality,
        mask_random_color=mask_random_color,
        bbox=None,
        use_retina=use_retina,
        withContours=withContours,
    )

    global_points = []
    global_point_label = []
    # return fig, None
    return fig, image


def get_points_with_draw(image, label, evt: gr.SelectData):
    global global_points
    global global_point_label

    x, y = evt.index[0], evt.index[1]
    point_radius, point_color = 15, (255, 255, 0) if label == "Add Mask" else (
        255,
        0,
        255,
    )
    global_points.append([x, y])
    global_point_label.append(1 if label == "Add Mask" else 0)

    print(x, y, label == "Add Mask")

    # 创建一个可以在图像上绘图的对象
    draw = ImageDraw.Draw(image)
    draw.ellipse(
        [(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)],
        fill=point_color,
    )
    return image


cond_img_e = gr.Image(label="Input", value=default_example[0], type="pil")
cond_img_p = gr.Image(label="Input with points", value=default_example[0], type="pil")

segm_img_e = gr.Image(label="Segmented Image", interactive=False, type="pil")
segm_img_p = gr.Image(
    label="Segmented Image with points", interactive=False, type="pil"
)

global_points = []
global_point_label = []

input_size_slider = gr.components.Slider(
    minimum=512,
    maximum=1024,
    value=1024,
    step=64,
    label="Input_size",
    info="Our model was trained on a size of 1024",
)

with gr.Blocks(css=css, title="Faster Segment Anything(MobileSAM)") as demo:
    with gr.Row():
        with gr.Column(scale=1):
            # Title
            gr.Markdown(title)

    # with gr.Tab("Everything mode"):
    #     # Images
    #     with gr.Row(variant="panel"):
    #         with gr.Column(scale=1):
    #             cond_img_e.render()
    #
    #         with gr.Column(scale=1):
    #             segm_img_e.render()
    #
    #     # Submit & Clear
    #     with gr.Row():
    #         with gr.Column():
    #             input_size_slider.render()
    #
    #             with gr.Row():
    #                 contour_check = gr.Checkbox(
    #                     value=True,
    #                     label="withContours",
    #                     info="draw the edges of the masks",
    #                 )
    #
    #                 with gr.Column():
    #                     segment_btn_e = gr.Button(
    #                         "Segment Everything", variant="primary"
    #                     )
    #                     clear_btn_e = gr.Button("Clear", variant="secondary")
    #
    #             gr.Markdown("Try some of the examples below ⬇️")
    #             gr.Examples(
    #                 examples=examples,
    #                 inputs=[cond_img_e],
    #                 outputs=segm_img_e,
    #                 fn=segment_everything,
    #                 cache_examples=True,
    #                 examples_per_page=4,
    #             )
    #
    #         with gr.Column():
    #             with gr.Accordion("Advanced options", open=False):
    #                 # text_box = gr.Textbox(label="text prompt")
    #                 with gr.Row():
    #                     mor_check = gr.Checkbox(
    #                         value=False,
    #                         label="better_visual_quality",
    #                         info="better quality using morphologyEx",
    #                     )
    #                     with gr.Column():
    #                         retina_check = gr.Checkbox(
    #                             value=True,
    #                             label="use_retina",
    #                             info="draw high-resolution segmentation masks",
    #                         )
    #             # Description
    #             gr.Markdown(description_e)
    #
    with gr.Tab("Point mode"):
        # Images
        with gr.Row(variant="panel"):
            with gr.Column(scale=1):
                cond_img_p.render()

            with gr.Column(scale=1):
                segm_img_p.render()

        # Submit & Clear
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    add_or_remove = gr.Radio(
                        ["Add Mask", "Remove Area"],
                        value="Add Mask",
                    )

                    with gr.Column():
                        segment_btn_p = gr.Button(
                            "Start segmenting!", variant="primary"
                        )
                        clear_btn_p = gr.Button("Restart", variant="secondary")

                gr.Markdown("Try some of the examples below ⬇️")
                gr.Examples(
                    examples=examples,
                    inputs=[cond_img_p],
                    # outputs=segm_img_p,
                    # fn=segment_with_points,
                    # cache_examples=True,
                    examples_per_page=4,
                )

            with gr.Column():
                # Description
                gr.Markdown(description_p)

    cond_img_p.select(get_points_with_draw, [cond_img_p, add_or_remove], cond_img_p)

    # segment_btn_e.click(
    #     segment_everything,
    #     inputs=[
    #         cond_img_e,
    #         input_size_slider,
    #         mor_check,
    #         contour_check,
    #         retina_check,
    #     ],
    #     outputs=segm_img_e,
    # )

    segment_btn_p.click(
        segment_with_points, inputs=[cond_img_p], outputs=[segm_img_p, cond_img_p]
    )

    def clear():
        return None, None

    def clear_text():
        return None, None, None

    # clear_btn_e.click(clear, outputs=[cond_img_e, segm_img_e])
    clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p])

demo.queue()
demo.launch()