import gradio as gr import time import openai from llama_index import StorageContext, load_index_from_storage import pandas as pd import os openai.api_key = os.getenv("OPENAI_API_KEY") passwd = os.getenv("PASSWD_SECRET") df = pd.read_csv("original_huberman.csv") storage_context = StorageContext.from_defaults(persist_dir="./storage") # load index import os def get_podcast_and_youtube(response): podcasts = [] for node in response.source_nodes: podcast = node.node.extra_info["filename"].split("/")[-1].split(".")[0] podcasts.append(podcast) mask = df.podcast.apply(lambda x: x in podcasts) return df.loc[mask] with gr.Blocks() as demo: gr.Markdown("
Hi! I am Andrew HuberChat, a chatbot trained to answer neurobiology.
") gr.Markdown("Disclaimer: this is a fan-made project to highlight the work of Andrew Huberman. To support this project, please have a look at Huberman Lab.
") with gr.Row().style(): with gr.Column(scale=0.85): msg = gr.Textbox( show_label=False, placeholder="Enter text and press enter.", lines=1, ).style(container=False) with gr.Column(scale=0.15, min_width=0): btn2 = gr.Button("Send").style(full_height=True) gr.Examples( examples=["What is love?", "Why should I get sunlight exposure?", "What are the benefits of walks after lunch?" ], inputs=msg ) chatbot = gr.Chatbot().style(height=250) clear = gr.Button("Clear") def respond(message, chat_history): index = load_index_from_storage(storage_context) query_engine = index.as_query_engine(similarity_top_k=3) response = query_engine.query(message) bot_message = response.response for i, row in get_podcast_and_youtube(response).iterrows(): bot_message += f"\n\n\n Source: {row.podcast} \n\n Link: {row.youtube_id}" chat_history.append((message, bot_message)) time.sleep(1) return "", chat_history msg.submit(respond, [msg, chatbot], [msg, chatbot]) btn2.click(respond, [msg, chatbot], [msg, chatbot]) clear.click(lambda: None, None, chatbot, queue=False) if __name__ == "__main__": demo.launch(auth=("mithril", passwd))