import gradio as gr from gpt4all import GPT4All from huggingface_hub import hf_hub_download title = "DiarizationLM GGUF inference on CPU" description = """ DiarizationLM GGUF inference on CPU """ model_path = "models" model_name = "q4_k_m.gguf" hf_hub_download(repo_id="google/DiarizationLM-13b-Fisher-v1", filename=model_name, local_dir=model_path, local_dir_use_symlinks=False) print("Start the model init process") model = GPT4All(model_name=model_name, model_path=model_path, allow_download = False, device="cpu") print("Finish the model init process") model.config["promptTemplate"] = "{0} --> " model.config["systemPrompt"] = "" model._is_chat_session_activated = False print("Finish the model config process") def generater(message, history, temperature, top_p, top_k): prompt = model.config["promptTemplate"].format(message) max_new_tokens = round(len(prompt) / 3.0 * 1.2) outputs = [] for token in model.generate(prompt=prompt, temp=0.0, top_k = 50, top_p = 0.9, max_tokens = max_new_tokens, streaming=True): outputs.append(token) yield "".join(outputs) def vote(data: gr.LikeData): if data.liked: return else: return print("Create chatbot") chatbot = gr.Chatbot() print("Created chatbot") iface = gr.ChatInterface( fn = generater, title=title, description = description, chatbot=chatbot, additional_inputs=[], examples=[ [" Hello, how are you doing today? I am doing well."], ] ) print("Added iface") with gr.Blocks() as demo: chatbot.like(vote, None, None) iface.render() print("Rendered iface") if __name__ == "__main__": demo.queue(max_size=3).launch()