import gradio as gr from gpt4all import GPT4All from huggingface_hub import hf_hub_download title = "DiarizationLM GGUF inference on CPU" description = """ """ model_path = "models" model_name = "model-unsloth.Q4_K_M.gguf" hf_hub_download(repo_id="google/DiarizationLM-13b-Fisher-v1", filename=model_name, local_dir=model_path, local_dir_use_symlinks=False) print("Start the model init process") model = model = GPT4All(model_name, model_path, allow_download = False, device="cpu") print("Finish the model init process") model.config["promptTemplate"] = "{0} --> " model.config["systemPrompt"] = "" model._is_chat_session_activated = False max_new_tokens = 2048 def generater(message, history, temperature, top_p, top_k): prompt = model.config["promptTemplate"].format(message) outputs = [] for token in model.generate(prompt=prompt, temp=temperature, top_k = top_k, top_p = top_p, max_tokens = max_new_tokens, streaming=True): outputs.append(token) yield "".join(outputs) def vote(data: gr.LikeData): if data.liked: return else: return chatbot = gr.Chatbot(avatar_images=('resourse/user-icon.png', 'resourse/chatbot-icon.png'),bubble_full_width = False) additional_inputs=[ gr.Slider( label="temperature", value=0.5, minimum=0.0, maximum=2.0, step=0.05, interactive=True, info="Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.", ), gr.Slider( label="top_p", value=1.0, minimum=0.0, maximum=1.0, step=0.01, interactive=True, info="0.1 means only the tokens comprising the top 10% probability mass are considered. Suggest set to 1 and use temperature. 1 means 100% and will disable it", ), gr.Slider( label="top_k", value=40, minimum=0, maximum=1000, step=1, interactive=True, info="limits candidate tokens to a fixed number after sorting by probability. Setting it higher than the vocabulary size deactivates this limit.", ) ] iface = gr.ChatInterface( fn = generater, title=title, description = description, chatbot=chatbot, additional_inputs=additional_inputs, examples=[ [" Hello, how are you doing today? I am doing well."], ] ) with gr.Blocks(css="resourse/style/custom.css") as demo: chatbot.like(vote, None, None) iface.render() if __name__ == "__main__": demo.queue(max_size=3).launch()