Update app.py
Browse files
app.py
CHANGED
@@ -4,8 +4,9 @@ import plotly.graph_objects as go
|
|
4 |
from sklearn.linear_model import LinearRegression
|
5 |
import numpy as np
|
6 |
from pandas.tseries.offsets import MonthEnd
|
|
|
7 |
|
8 |
-
def plot_and_predict(zip,
|
9 |
# Read and process the real estate data from Zillow
|
10 |
df = pd.read_csv('https://files.zillowstatic.com/research/public_csvs/zhvi/Zip_zhvi_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv')
|
11 |
df = df[df['RegionName'] == int(zip)]
|
@@ -14,7 +15,8 @@ def plot_and_predict(zip, start_date, prediction_months):
|
|
14 |
df.columns = ['Date', 'Price']
|
15 |
df['Date'] = pd.to_datetime(df['Date'])
|
16 |
|
17 |
-
#
|
|
|
18 |
start_date = pd.to_datetime(start_date)
|
19 |
df = df[df['Date'] >= start_date]
|
20 |
|
@@ -58,16 +60,30 @@ def plot_and_predict(zip, start_date, prediction_months):
|
|
58 |
|
59 |
return fig
|
60 |
|
61 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
interface = gr.Interface(
|
63 |
fn=plot_and_predict,
|
64 |
inputs=[
|
65 |
-
gr.Textbox(label="ZIP Code"),
|
66 |
-
gr.Textbox(label="Start
|
67 |
-
gr.
|
|
|
68 |
],
|
69 |
-
outputs="plot"
|
|
|
|
|
|
|
70 |
)
|
71 |
|
72 |
# Launch the app
|
73 |
-
interface.launch()
|
|
|
4 |
from sklearn.linear_model import LinearRegression
|
5 |
import numpy as np
|
6 |
from pandas.tseries.offsets import MonthEnd
|
7 |
+
import datetime
|
8 |
|
9 |
+
def plot_and_predict(zip, start_year, start_month, prediction_months):
|
10 |
# Read and process the real estate data from Zillow
|
11 |
df = pd.read_csv('https://files.zillowstatic.com/research/public_csvs/zhvi/Zip_zhvi_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv')
|
12 |
df = df[df['RegionName'] == int(zip)]
|
|
|
15 |
df.columns = ['Date', 'Price']
|
16 |
df['Date'] = pd.to_datetime(df['Date'])
|
17 |
|
18 |
+
# Combine year and month into a start date and filter data based on it
|
19 |
+
start_date = f"{start_year}-{start_month:02d}-01"
|
20 |
start_date = pd.to_datetime(start_date)
|
21 |
df = df[df['Date'] >= start_date]
|
22 |
|
|
|
60 |
|
61 |
return fig
|
62 |
|
63 |
+
# Custom validation functions
|
64 |
+
def validate_zip(zip_code):
|
65 |
+
if not zip_code.isdigit() or len(zip_code) != 5:
|
66 |
+
return "Please enter a valid 5-digit ZIP code."
|
67 |
+
|
68 |
+
def validate_year(year):
|
69 |
+
current_year = datetime.datetime.now().year
|
70 |
+
if not year.isdigit() or not (2000 <= int(year) <= current_year):
|
71 |
+
return f"Please enter a valid year between 2000 and {current_year}."
|
72 |
+
|
73 |
+
# Gradio interface with updated inputs and validations
|
74 |
interface = gr.Interface(
|
75 |
fn=plot_and_predict,
|
76 |
inputs=[
|
77 |
+
gr.Textbox(label="ZIP Code", placeholder="e.g., 90210", validation=validate_zip),
|
78 |
+
gr.Textbox(label="Start Year", placeholder="e.g., 2020", validation=validate_year),
|
79 |
+
gr.Dropdown(label="Start Month", choices=[str(i) for i in range(1, 13)], placeholder="Select Month"),
|
80 |
+
gr.Slider(minimum=1, maximum=60, step=1, label="Prediction Months", default=12),
|
81 |
],
|
82 |
+
outputs="plot",
|
83 |
+
layout="vertical",
|
84 |
+
title="Real Estate Price Predictor",
|
85 |
+
description="Enter a ZIP code, start year, start month, and the number of months for price prediction."
|
86 |
)
|
87 |
|
88 |
# Launch the app
|
89 |
+
interface.launch(debug=True)
|