pcuenq HF staff commited on
Commit
3b28b98
1 Parent(s): ef14a08

controlnet (#12)

Browse files

- Support ControlNet (2cc021a63376f6018b32af1c05caec4b426c30f0)
- Use PR title, minor changes to description. (d90dedd0e8870981b8a02e3b93cab9357907cad2)
- Add progress bar. (d5cdfff401fdd06e45524be5cfd809d4a1f738d6)

Files changed (2) hide show
  1. app.py +1 -1
  2. convert.py +28 -13
app.py CHANGED
@@ -24,7 +24,7 @@ demo = gr.Interface(
24
  gr.Text(max_lines=1, label="your_hf_token"),
25
  gr.Text(max_lines=1, label="model_id"),
26
  gr.Text(max_lines=1, label="filename"),
27
- gr.Radio(label="Model type", choices=["v1", "v2"]),
28
  gr.Radio(label="Sample size (px)", choices=[512, 768]),
29
  gr.Radio(label="Scheduler type", choices=["pndm", "heun", "euler", "dpm", "ddim"], value="dpm"),
30
  gr.Radio(label="Extract EMA or non-EMA?", choices=["ema", "non-ema"], value="ema"),
 
24
  gr.Text(max_lines=1, label="your_hf_token"),
25
  gr.Text(max_lines=1, label="model_id"),
26
  gr.Text(max_lines=1, label="filename"),
27
+ gr.Radio(label="Model type", choices=["v1", "v2", "ControlNet"]),
28
  gr.Radio(label="Sample size (px)", choices=[512, 768]),
29
  gr.Radio(label="Scheduler type", choices=["pndm", "heun", "euler", "dpm", "ddim"], value="dpm"),
30
  gr.Radio(label="Extract EMA or non-EMA?", choices=["ema", "non-ema"], value="ema"),
convert.py CHANGED
@@ -1,28 +1,29 @@
1
- import argparse
2
  import requests
3
- import json
4
  import os
5
  import shutil
6
- from collections import defaultdict
7
- from inspect import signature
8
  from tempfile import TemporaryDirectory
9
- from typing import Dict, List, Optional, Set
10
 
11
  import torch
12
  from io import BytesIO
13
 
14
  from huggingface_hub import CommitInfo, Discussion, HfApi, hf_hub_download
15
  from huggingface_hub.file_download import repo_folder_name
16
- from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt
 
 
17
  from transformers import CONFIG_MAPPING
18
 
19
 
20
- COMMIT_MESSAGE = " This PR adds the both fp32 and fp16 in PyTorch and safetensors format to {}"
21
 
22
 
23
- def convert_single(model_id: str, filename: str, model_type: str, sample_size: int, scheduler_type: str, extract_ema: bool, folder: str):
24
  from_safetensors = filename.endswith(".safetensors")
25
 
 
26
  local_file = os.path.join(model_id, filename)
27
  ckpt_file = local_file if os.path.isfile(local_file) else hf_hub_download(repo_id=model_id, filename=filename)
28
 
@@ -33,15 +34,25 @@ def convert_single(model_id: str, filename: str, model_type: str, sample_size: i
33
  config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference.yaml"
34
  else:
35
  config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml"
 
 
 
36
 
37
  config_file = BytesIO(requests.get(config_url).content)
38
 
39
- pipeline = download_from_original_stable_diffusion_ckpt(ckpt_file, config_file, image_size=sample_size, scheduler_type=scheduler_type, from_safetensors=from_safetensors, extract_ema=extract_ema)
 
 
 
 
 
 
 
40
 
41
  pipeline.save_pretrained(folder)
42
  pipeline.save_pretrained(folder, safe_serialization=True)
43
 
44
- pipeline = pipeline.to(torch_dtype=torch.float16)
45
  pipeline.save_pretrained(folder, variant="fp16")
46
  pipeline.save_pretrained(folder, safe_serialization=True, variant="fp16")
47
 
@@ -60,7 +71,7 @@ def previous_pr(api: "HfApi", model_id: str, pr_title: str) -> Optional["Discuss
60
  return discussion
61
 
62
 
63
- def convert(token: str, model_id: str, filename: str, model_type: str, sample_size: int = 512, scheduler_type: str = "pndm", extract_ema: bool = True):
64
  api = HfApi()
65
 
66
  pr_title = "Adding `diffusers` weights of this model"
@@ -70,10 +81,14 @@ def convert(token: str, model_id: str, filename: str, model_type: str, sample_si
70
  os.makedirs(folder)
71
  new_pr = None
72
  try:
73
- folder = convert_single(model_id, filename, model_type, sample_size, scheduler_type, extract_ema, folder)
74
- new_pr = api.upload_folder(folder_path=folder, path_in_repo="./", repo_id=model_id, repo_type="model", token=token, commit_description=COMMIT_MESSAGE.format(model_id), create_pr=True)
 
75
  pr_number = new_pr.split("%2F")[-1].split("/")[0]
76
  link = f"Pr created at: {'https://huggingface.co/' + os.path.join(model_id, 'discussions', pr_number)}"
 
 
 
77
  finally:
78
  shutil.rmtree(folder)
79
 
 
1
+ import gradio as gr
2
  import requests
 
3
  import os
4
  import shutil
5
+ from pathlib import Path
 
6
  from tempfile import TemporaryDirectory
7
+ from typing import Optional
8
 
9
  import torch
10
  from io import BytesIO
11
 
12
  from huggingface_hub import CommitInfo, Discussion, HfApi, hf_hub_download
13
  from huggingface_hub.file_download import repo_folder_name
14
+ from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
15
+ download_from_original_stable_diffusion_ckpt, download_controlnet_from_original_ckpt
16
+ )
17
  from transformers import CONFIG_MAPPING
18
 
19
 
20
+ COMMIT_MESSAGE = " This PR adds fp32 and fp16 weights in PyTorch and safetensors format to {}"
21
 
22
 
23
+ def convert_single(model_id: str, filename: str, model_type: str, sample_size: int, scheduler_type: str, extract_ema: bool, folder: str, progress):
24
  from_safetensors = filename.endswith(".safetensors")
25
 
26
+ progress(0, desc="Downloading model")
27
  local_file = os.path.join(model_id, filename)
28
  ckpt_file = local_file if os.path.isfile(local_file) else hf_hub_download(repo_id=model_id, filename=filename)
29
 
 
34
  config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference.yaml"
35
  else:
36
  config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml"
37
+ elif model_type == "ControlNet":
38
+ config_url = (Path(model_id)/"resolve/main"/filename).with_suffix(".yaml")
39
+ config_url = "https://huggingface.co/" + str(config_url)
40
 
41
  config_file = BytesIO(requests.get(config_url).content)
42
 
43
+ if model_type == "ControlNet":
44
+ progress(0.2, desc="Converting ControlNet Model")
45
+ pipeline = download_controlnet_from_original_ckpt(ckpt_file, config_file, image_size=sample_size, from_safetensors=from_safetensors, extract_ema=extract_ema)
46
+ to_args = {"dtype": torch.float16}
47
+ else:
48
+ progress(0.1, desc="Converting Model")
49
+ pipeline = download_from_original_stable_diffusion_ckpt(ckpt_file, config_file, image_size=sample_size, scheduler_type=scheduler_type, from_safetensors=from_safetensors, extract_ema=extract_ema)
50
+ to_args = {"torch_dtype": torch.float16}
51
 
52
  pipeline.save_pretrained(folder)
53
  pipeline.save_pretrained(folder, safe_serialization=True)
54
 
55
+ pipeline = pipeline.to(**to_args)
56
  pipeline.save_pretrained(folder, variant="fp16")
57
  pipeline.save_pretrained(folder, safe_serialization=True, variant="fp16")
58
 
 
71
  return discussion
72
 
73
 
74
+ def convert(token: str, model_id: str, filename: str, model_type: str, sample_size: int = 512, scheduler_type: str = "pndm", extract_ema: bool = True, progress=gr.Progress()):
75
  api = HfApi()
76
 
77
  pr_title = "Adding `diffusers` weights of this model"
 
81
  os.makedirs(folder)
82
  new_pr = None
83
  try:
84
+ folder = convert_single(model_id, filename, model_type, sample_size, scheduler_type, extract_ema, folder, progress)
85
+ progress(0.7, desc="Uploading to Hub")
86
+ new_pr = api.upload_folder(folder_path=folder, path_in_repo="./", repo_id=model_id, repo_type="model", token=token, commit_message=pr_title, commit_description=COMMIT_MESSAGE.format(model_id), create_pr=True)
87
  pr_number = new_pr.split("%2F")[-1].split("/")[0]
88
  link = f"Pr created at: {'https://huggingface.co/' + os.path.join(model_id, 'discussions', pr_number)}"
89
+ progress(1, desc="Done")
90
+ except Exception as e:
91
+ raise gr.exceptions.Error(str(e))
92
  finally:
93
  shutil.rmtree(folder)
94