Spaces:
Running
on
Zero
Running
on
Zero
import imageio | |
import numpy as np | |
import spaces | |
import torch | |
from diffusers import UniPCMultistepScheduler, StableDiffusionControlNetPipeline | |
from diffusers.utils import get_class_from_dynamic_module | |
from tqdm import tqdm | |
device = torch.device('cuda') | |
dtype = torch.float16 | |
NeuralTextureControlNetModel = get_class_from_dynamic_module( | |
"dilightnet/model_helpers", | |
"neuraltexture_controlnet.py", | |
"NeuralTextureControlNetModel" | |
) | |
controlnet = NeuralTextureControlNetModel.from_pretrained( | |
"dilightnet/DiLightNet", | |
torch_dtype=dtype, | |
) | |
pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-2-1", controlnet=controlnet, torch_dtype=dtype | |
).to(device) | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
pipe.set_progress_bar_config(disable=True) | |
def relighting_gen(masked_ref_img, mask, cond_path, frames, prompt, steps, seed, cfg): | |
mask = mask[..., :1] / 255. | |
for i in tqdm(range(frames)): | |
source_image = masked_ref_img[..., :3] / 255. | |
cond_diffuse = imageio.v3.imread(f'{cond_path}/hint{i:02d}_diffuse.png') / 255. | |
if cond_diffuse.shape[-1] == 4: | |
cond_diffuse = cond_diffuse[..., :3] * cond_diffuse[..., 3:] | |
cond_ggx034 = imageio.v3.imread(f'{cond_path}/hint{i:02d}_ggx0.34.png') / 255. | |
if cond_ggx034.shape[-1] == 4: | |
cond_ggx034 = cond_ggx034[..., :3] * cond_ggx034[..., 3:] | |
cond_ggx013 = imageio.v3.imread(f'{cond_path}/hint{i:02d}_ggx0.13.png') / 255. | |
if cond_ggx013.shape[-1] == 4: | |
cond_ggx013 = cond_ggx013[..., :3] * cond_ggx013[..., 3:] | |
cond_ggx005 = imageio.v3.imread(f'{cond_path}/hint{i:02d}_ggx0.05.png') / 255. | |
if cond_ggx005.shape[-1] == 4: | |
cond_ggx005 = cond_ggx005[..., :3] * cond_ggx005[..., 3:] | |
hint = np.concatenate([mask, source_image, cond_diffuse, cond_ggx005, cond_ggx013, cond_ggx034], axis=2).astype(np.float32)[None] | |
hint = torch.from_numpy(hint).to(dtype).permute(0, 3, 1, 2).to(device) | |
generator = torch.manual_seed(seed) | |
image = pipe( | |
prompt, num_inference_steps=steps, generator=generator, image=hint, num_images_per_prompt=1, guidance_scale=cfg, output_type='np', | |
).images[0] # [H, W, C] | |
imageio.imwrite(f'{cond_path}/relighting{i:02d}.png', (image * 255).clip(0, 255).astype(np.uint8)) | |