import os import logging import gradio as gr from huggingface_hub import hf_hub_download # Install necessary libraries using os.system os.system("pip install --upgrade pip") os.system("pip install llama-cpp-agent huggingface_hub trafilatura beautifulsoup4 requests duckduckgo-search googlesearch-python") # Attempt to import all required modules try: from llama_cpp import Llama from llama_cpp_agent.providers import LlamaCppPythonProvider from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType from llama_cpp_agent.chat_history import BasicChatHistory from llama_cpp_agent.chat_history.messages import Roles from llama_cpp_agent.llm_output_settings import ( LlmStructuredOutputSettings, LlmStructuredOutputType, ) from llama_cpp_agent.tools import WebSearchTool from llama_cpp_agent.prompt_templates import web_search_system_prompt, research_system_prompt from utils import CitingSources from settings import get_context_by_model, get_messages_formatter_type except ImportError as e: raise ImportError(f"Error importing modules: {e}") # Download the models hf_hub_download( repo_id="bartowski/Mistral-7B-Instruct-v0.3-GGUF", filename="Mistral-7B-Instruct-v0.3-Q6_K.gguf", local_dir="./models" ) hf_hub_download( repo_id="bartowski/Meta-Llama-3-8B-Instruct-GGUF", filename="Meta-Llama-3-8B-Instruct-Q6_K.gguf", local_dir="./models" ) hf_hub_download( repo_id="TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF", filename="mixtral-8x7b-instruct-v0.1.Q5_K_M.gguf", local_dir="./models" ) # Function to respond to user messages def respond(message, temperature, top_p, top_k, repeat_penalty): try: model = "mixtral-8x7b-instruct-v0.1.Q5_K_M.gguf" max_tokens = 3000 chat_template = get_messages_formatter_type(model) llm = Llama( model_path=f"models/{model}", flash_attn=True, n_gpu_layers=81, n_batch=1024, n_ctx=get_context_by_model(model), ) provider = LlamaCppPythonProvider(llm) logging.info(f"Loaded chat examples: {chat_template}") search_tool = WebSearchTool( llm_provider=provider, message_formatter_type=chat_template, max_tokens_search_results=12000, max_tokens_per_summary=2048, ) web_search_agent = LlamaCppAgent( provider, system_prompt=web_search_system_prompt, predefined_messages_formatter_type=chat_template, debug_output=True, ) answer_agent = LlamaCppAgent( provider, system_prompt=research_system_prompt, predefined_messages_formatter_type=chat_template, debug_output=True, ) settings = provider.get_provider_default_settings() settings.stream = False settings.temperature = temperature settings.top_k = top_k settings.top_p = top_p settings.max_tokens = max_tokens settings.repeat_penalty = repeat_penalty output_settings = LlmStructuredOutputSettings.from_functions( [search_tool.get_tool()] ) messages = BasicChatHistory() result = web_search_agent.get_chat_response( message, llm_sampling_settings=settings, structured_output_settings=output_settings, add_message_to_chat_history=False, add_response_to_chat_history=False, print_output=False, ) outputs = "" settings.stream = True response_text = answer_agent.get_chat_response( f"Write a detailed and complete research document that fulfills the following user request: '{message}', based on the information from the web below.\n\n" + result[0]["return_value"], role=Roles.tool, llm_sampling_settings=settings, chat_history=messages, returns_streaming_generator=True, print_output=False, ) for text in response_text: outputs += text output_settings = LlmStructuredOutputSettings.from_pydantic_models( [CitingSources], LlmStructuredOutputType.object_instance ) citing_sources = answer_agent.get_chat_response( "Cite the sources you used in your response.", role=Roles.tool, llm_sampling_settings=settings, chat_history=messages, returns_streaming_generator=False, structured_output_settings=output_settings, print_output=False, ) outputs += "\n\nSources:\n" outputs += "\n".join(citing_sources.sources) return outputs except Exception as e: return f"An error occurred: {e}" # Gradio interface demo = gr.Interface( fn=respond, inputs=[ gr.Textbox(label="Enter your message:"), gr.Slider(minimum=0.1, maximum=1.0, value=0.45, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k"), gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty") ], outputs="text", title="Novav2 Web Engine" ) if __name__ == "__main__": demo.launch()