import os import streamlit as st import torch import sentencepiece as spm import onnxruntime as ort from pydub import AudioSegment import numpy as np import soxr import edge_tts import requests from bs4 import BeautifulSoup import urllib import random from huggingface_hub import hf_hub_download, InferenceClient import tempfile # Install necessary libraries os.system('pip install streamlit torch onnxruntime transformers sentencepiece pydub soxr edge-tts requests beautifulsoup4') # Load models model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25" sample_rate = 16000 preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx")) encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx")) tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx")) client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") system_instructions1 = "[SYSTEM] Answer as Real OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]" _useragent_list = [ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36', 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0' ] def get_useragent(): return random.choice(_useragent_list) def extract_text_from_webpage(html_content): soup = BeautifulSoup(html_content, "html.parser") for tag in soup(["script", "style", "header", "footer", "nav"]): tag.extract() visible_text = soup.get_text(strip=True) return visible_text def search(term, num_results=1): escaped_term = urllib.parse.quote_plus(term) start = 0 all_results = [] while start < num_results: resp = requests.get( url="https://www.google.com/search", headers={"User-Agent": get_useragent()}, params={ "q": term, "num": num_results - start, "hl": "en", "start": start, "safe": "active", }, timeout=5, ) resp.raise_for_status() soup = BeautifulSoup(resp.text, "html.parser") result_block = soup.find_all("div", attrs={"class": "g"}) if not result_block: start += 1 continue for result in result_block: link = result.find("a", href=True) if link: link = link["href"] try: webpage = requests.get(link, headers={"User-Agent": get_useragent()}) webpage.raise_for_status() visible_text = extract_text_from_webpage(webpage.text) all_results.append({"link": link, "text": visible_text}) except requests.exceptions.RequestException as e: all_results.append({"link": link, "text": None}) else: all_results.append({"link": None, "text": None}) start += len(result_block) return all_results def resample(audio_fp32, sr): return soxr.resample(audio_fp32, sr, sample_rate) def to_float32(audio_buffer): return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32) def transcribe(audio_path): audio_file = AudioSegment.from_file(audio_path) sr = audio_file.frame_rate audio_buffer = np.array(audio_file.get_array_of_samples()) audio_fp32 = to_float32(audio_buffer) audio_16k = resample(audio_fp32, sr) input_signal = torch.tensor(audio_16k).unsqueeze(0) length = torch.tensor(len(audio_16k)).unsqueeze(0) processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length) logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0] blank_id = tokenizer.vocab_size() decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id] text = tokenizer.decode_ids(decoded_prediction) return text def model(text, web_search): if web_search: web_results = search(text) web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results]) formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[OpenGPT 4o]" stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False) return "".join([response.token.text for response in stream if response.token.text != ""]) else: formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]" stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False) return "".join([response.token.text for response in stream if response.token.text != ""]) async def respond(audio, web_search): user = transcribe(audio) reply = model(user, web_search) communicate = edge_tts.Communicate(reply) with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: tmp_path = tmp_file.name await communicate.save(tmp_path) return tmp_path # Streamlit interface st.title("OpenGPT 4o DEMO") # Chat input interface st.subheader("💬 SuperChat") prompt = st.text_input("Say something") if prompt: web_search = st.checkbox("Web Search", value=True) response = model(prompt, web_search) st.write(response) # Audio input interface st.subheader("🗣️ Voice Chat") audio_file = st.file_uploader("Upload an audio file", type=["wav", "mp3"]) if audio_file: web_search = st.checkbox("Web Search", value=False) with st.spinner("Transcribing and generating response..."): audio_path = audio_file.name with open(audio_path, "wb") as f: f.write(audio_file.getbuffer()) response_audio = await respond(audio_path, web_search) st.audio(response_audio)