Spaces:
Sleeping
Sleeping
File size: 6,141 Bytes
38de785 25bcda8 38de785 436d21b 38de785 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import os
# Install necessary libraries using os.system
os.system("pip install streamlit llama-cpp-agent huggingface_hub")
try:
from llama_cpp import Llama
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
from llama_cpp_agent.llm_output_settings import (
LlmStructuredOutputSettings,
LlmStructuredOutputType,
)
from llama_cpp_agent.tools import WebSearchTool
from llama_cpp_agent.prompt_templates import web_search_system_prompt, research_system_prompt
from utils import CitingSources
from settings import get_context_by_model, get_messages_formatter_type
except ImportError as e:
raise ImportError(f"Error importing modules: {e}")
import logging
import streamlit as st
from huggingface_hub import hf_hub_download
# Download the models
hf_hub_download(
repo_id="bartowski/Mistral-7B-Instruct-v0.3-GGUF",
filename="Mistral-7B-Instruct-v0.3-Q6_K.gguf",
local_dir="./models"
)
hf_hub_download(
repo_id="bartowski/Meta-Llama-3-8B-Instruct-GGUF",
filename="Meta-Llama-3-8B-Instruct-Q6_K.gguf",
local_dir="./models"
)
hf_hub_download(
repo_id="TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF",
filename="mixtral-8x7b-instruct-v0.1.Q5_K_M.gguf",
local_dir="./models"
)
# Function to respond to user messages
def respond(message, history, model, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty):
chat_template = get_messages_formatter_type(model)
llm = Llama(
model_path=f"models/{model}",
flash_attn=True,
n_gpu_layers=81,
n_batch=1024,
n_ctx=get_context_by_model(model),
)
provider = LlamaCppPythonProvider(llm)
logging.info(f"Loaded chat examples: {chat_template}")
search_tool = WebSearchTool(
llm_provider=provider,
message_formatter_type=chat_template,
max_tokens_search_results=12000,
max_tokens_per_summary=2048,
)
web_search_agent = LlamaCppAgent(
provider,
system_prompt=web_search_system_prompt,
predefined_messages_formatter_type=chat_template,
debug_output=True,
)
answer_agent = LlamaCppAgent(
provider,
system_prompt=research_system_prompt,
predefined_messages_formatter_type=chat_template,
debug_output=True,
)
settings = provider.get_provider_default_settings()
settings.stream = False
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
output_settings = LlmStructuredOutputSettings.from_functions(
[search_tool.get_tool()]
)
messages = BasicChatHistory()
for msn in history:
user = {"role": Roles.user, "content": msn[0]}
assistant = {"role": Roles.assistant, "content": msn[1]}
messages.add_message(user)
messages.add_message(assistant)
result = web_search_agent.get_chat_response(
message,
llm_sampling_settings=settings,
structured_output_settings=output_settings,
add_message_to_chat_history=False,
add_response_to_chat_history=False,
print_output=False,
)
outputs = ""
settings.stream = True
response_text = answer_agent.get_chat_response(
f"Write a detailed and complete research document that fulfills the following user request: '{message}', based on the information from the web below.\n\n" +
result[0]["return_value"],
role=Roles.tool,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=True,
print_output=False,
)
for text in response_text:
outputs += text
yield outputs
output_settings = LlmStructuredOutputSettings.from_pydantic_models(
[CitingSources], LlmStructuredOutputType.object_instance
)
citing_sources = answer_agent.get_chat_response(
"Cite the sources you used in your response.",
role=Roles.tool,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=False,
structured_output_settings=output_settings,
print_output=False,
)
outputs += "\n\nSources:\n"
outputs += "\n".join(citing_sources.sources)
yield outputs
# Streamlit app
st.title("Llama-CPP-Agent Chatbot with Web Search")
# Sidebar for settings
st.sidebar.title("Settings")
model = st.sidebar.selectbox(
"Model",
[
'Mistral-7B-Instruct-v0.3-Q6_K.gguf',
'mixtral-8x7b-instruct-v0.1.Q5_K_M.gguf',
'Meta-Llama-3-8B-Instruct-Q6_K.gguf'
]
)
system_message = st.sidebar.text_area("System message", value=web_search_system_prompt)
max_tokens = st.sidebar.slider("Max tokens", min_value=1, max_value=4096, value=2048, step=1)
temperature = st.sidebar.slider("Temperature", min_value=0.1, max_value=1.0, value=0.45, step=0.1)
top_p = st.sidebar.slider("Top-p", min_value=0.1, max_value=1.0, value=0.95, step=0.05)
top_k = st.sidebar.slider("Top-k", min_value=0, max_value=100, value=40, step=1)
repeat_penalty = st.sidebar.slider("Repetition penalty", min_value=0.0, max_value=2.0, value=1.1, step=0.1)
# Chat history
if "history" not in st.session_state:
st.session_state.history = []
# Chat input
message = st.text_input("You:", key="input")
if st.button("Send"):
history = st.session_state.history
response = respond(
message,
history,
model,
system_message,
max_tokens,
temperature,
top_p,
top_k,
repeat_penalty
)
for res in response:
st.session_state.history.append((message, res))
st.text_area("Chat", value=f"You: {message}\nBot: {res}", height=300)
# Display chat history
for user_msg, bot_msg in st.session_state.history:
st.text_area("Chat", value=f"You: {user_msg}\nBot: {bot_msg}", height=300)
|