import os # Install necessary libraries using os.system os.system("pip install --upgrade pip") os.system("pip install streamlit llama-cpp-agent huggingface_hub trafilatura beautifulsoup4 requests duckduckgo-search googlesearch-python") try: from llama_cpp import Llama from llama_cpp_agent.providers import LlamaCppPythonProvider from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType from llama_cpp_agent.chat_history import BasicChatHistory from llama_cpp_agent.chat_history.messages import Roles from llama_cpp_agent.llm_output_settings import ( LlmStructuredOutputSettings, LlmStructuredOutputType, ) from llama_cpp_agent.tools import WebSearchTool from llama_cpp_agent.prompt_templates import web_search_system_prompt, research_system_prompt from utils import CitingSources from settings import get_context_by_model, get_messages_formatter_type except ImportError as e: raise ImportError(f"Error importing modules: {e}") import logging import streamlit as st from huggingface_hub import hf_hub_download # Download the models hf_hub_download( repo_id="bartowski/Mistral-7B-Instruct-v0.3-GGUF", filename="Mistral-7B-Instruct-v0.3-Q6_K.gguf", local_dir="./models" ) hf_hub_download( repo_id="bartowski/Meta-Llama-3-8B-Instruct-GGUF", filename="Meta-Llama-3-8B-Instruct-Q6_K.gguf", local_dir="./models" ) hf_hub_download( repo_id="TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF", filename="mixtral-8x7b-instruct-v0.1.Q5_K_M.gguf", local_dir="./models" ) # Function to respond to user messages def respond(message, history, model, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty): chat_template = get_messages_formatter_type(model) llm = Llama( model_path=f"models/{model}", flash_attn=True, n_gpu_layers=81, n_batch=1024, n_ctx=get_context_by_model(model), ) provider = LlamaCppPythonProvider(llm) logging.info(f"Loaded chat examples: {chat_template}") search_tool = WebSearchTool( llm_provider=provider, message_formatter_type=chat_template, max_tokens_search_results=12000, max_tokens_per_summary=2048, ) web_search_agent = LlamaCppAgent( provider, system_prompt=web_search_system_prompt, predefined_messages_formatter_type=chat_template, debug_output=True, ) answer_agent = LlamaCppAgent( provider, system_prompt=research_system_prompt, predefined_messages_formatter_type=chat_template, debug_output=True, ) settings = provider.get_provider_default_settings() settings.stream = False settings.temperature = temperature settings.top_k = top_k settings.top_p = top_p settings.max_tokens = max_tokens settings.repeat_penalty = repeat_penalty output_settings = LlmStructuredOutputSettings.from_functions( [search_tool.get_tool()] ) messages = BasicChatHistory() for msn in history: user = {"role": Roles.user, "content": msn[0]} assistant = {"role": Roles.assistant, "content": msn[1]} messages.add_message(user) messages.add_message(assistant) result = web_search_agent.get_chat_response( message, llm_sampling_settings=settings, structured_output_settings=output_settings, add_message_to_chat_history=False, add_response_to_chat_history=False, print_output=False, ) outputs = "" settings.stream = True response_text = answer_agent.get_chat_response( f"Write a detailed and complete research document that fulfills the following user request: '{message}', based on the information from the web below.\n\n" + result[0]["return_value"], role=Roles.tool, llm_sampling_settings=settings, chat_history=messages, returns_streaming_generator=True, print_output=False, ) for text in response_text: outputs += text yield outputs output_settings = LlmStructuredOutputSettings.from_pydantic_models( [CitingSources], LlmStructuredOutputType.object_instance ) citing_sources = answer_agent.get_chat_response( "Cite the sources you used in your response.", role=Roles.tool, llm_sampling_settings=settings, chat_history=messages, returns_streaming_generator=False, structured_output_settings=output_settings, print_output=False, ) outputs += "\n\nSources:\n" outputs += "\n".join(citing_sources.sources) yield outputs # Streamlit app st.title("Llama-CPP-Agent Chatbot with Web Search") # Sidebar for settings st.sidebar.title("Settings") model = st.sidebar.selectbox( "Model", [ 'Mistral-7B-Instruct-v0.3-Q6_K.gguf', 'mixtral-8x7b-instruct-v0.1.Q5_K_M.gguf', 'Meta-Llama-3-8B-Instruct-Q6_K.gguf' ] ) system_message = st.sidebar.text_area("System message", value=web_search_system_prompt) max_tokens = st.sidebar.slider("Max tokens", min_value=1, max_value=4096, value=2048, step=1) temperature = st.sidebar.slider("Temperature", min_value=0.1, max_value=1.0, value=0.45, step=0.1) top_p = st.sidebar.slider("Top-p", min_value=0.1, max_value=1.0, value=0.95, step=0.05) top_k = st.sidebar.slider("Top-k", min_value=0, max_value=100, value=40, step=1) repeat_penalty = st.sidebar.slider("Repetition penalty", min_value=0.0, max_value=2.0, value=1.1, step=0.1) # Chat history if "history" not in st.session_state: st.session_state.history = [] # Chat input message = st.text_input("You:", key="input") if st.button("Send"): history = st.session_state.history response = respond( message, history, model, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty ) for res in response: st.session_state.history.append((message, res)) st.text_area("Chat", value=f"You: {message}\nBot: {res}", height=300) # Display chat history for user_msg, bot_msg in st.session_state.history: st.text_area("Chat", value=f"You: {user_msg}\nBot: {bot_msg}", height=300) if __name__ == "__main__": st.run()