Phi2-PDF-chat / app.py
dinhquangson's picture
Update app.py
13bddc0 verified
raw
history blame
6.25 kB
"""
Question Answering with Retrieval QA and LangChain Language Models featuring FAISS vector stores.
This script uses the LangChain Language Model API to answer questions using Retrieval QA
and FAISS vector stores. It also uses the Mistral huggingface inference endpoint to
generate responses.
"""
import os
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import UnstructuredPDFLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Chroma
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from langchain.llms import HuggingFaceHub
#from llama_index.llms import LlamaCPP
def get_pdf_pages(pdf_docs):
"""
Extract text from a list of PDF documents.
Parameters
----------
pdf_docs : list
List of PDF documents to extract text from.
Returns
-------
str
Extracted text from all the PDF documents.
"""
pages = []
import tempfile
with tempfile.TemporaryDirectory() as tmpdirname:
for pdf in pdf_docs:
pdf_path=os.path.join(tmpdirname,pdf.name)
with open(pdf_path, "wb") as f:
f.write(pdf.getbuffer())
pdf_loader = UnstructuredPDFLoader(pdf_path)
pdf_pages = pdf_loader.load_and_split()
pages=pages+pdf_pages
return pages
def get_text_chunks(pages):
"""
Split the input text into chunks.
Parameters
----------
text : str
The input text to be split.
Returns
-------
list
List of text chunks.
"""
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1024, chunk_overlap=64
)
texts = text_splitter.split_documents(pages)
print(str(len(texts)))
return texts
def get_vectorstore(text_chunks):
"""
Generate a vector store from a list of text chunks using HuggingFace BgeEmbeddings.
Parameters
----------
text_chunks : list
List of text chunks to be embedded.
Returns
-------
FAISS
A FAISS vector store containing the embeddings of the text chunks.
"""
MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
hf_embeddings = HuggingFaceEmbeddings(model_name=MODEL_NAME)
vectorstore = Chroma.from_documents(text_chunks, hf_embeddings, persist_directory="db")
return vectorstore
def get_conversation_chain(vectorstore):
"""
Create a conversational retrieval chain using a vector store and a language model.
Parameters
----------
vectorstore : FAISS
A FAISS vector store containing the embeddings of the text chunks.
Returns
-------
ConversationalRetrievalChain
A conversational retrieval chain for generating responses.
"""
llm = HuggingFaceHub(
repo_id="TheBloke/phi-2-GGUF",
model_kwargs={"temperature": 0.5, "max_new_tokens": 1024, "max_length": 1048, "top_k": 3, "trust_remote_code": True, "torch_dtype": "auto"},
)
# llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm, retriever=vectorstore.as_retriever(), memory=memory
)
return conversation_chain
def handle_userinput(user_question):
"""
Handle user input and generate a response using the conversational retrieval chain.
Parameters
----------
user_question : str
The user's question.
"""
response = st.session_state.conversation({"question": user_question})
st.session_state.chat_history = response["chat_history"]
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write("//_^ User: " + message.content)
else:
st.write("🤖 ChatBot: " + message.content)
def main():
"""
Putting it all together.
"""
st.set_page_config(
page_title="Chat with a Bot that tries to answer questions about multiple PDFs",
page_icon=":books:",
)
st.markdown("# Chat with a Bot")
st.markdown("This bot tries to answer questions about multiple PDFs. Let the processing of the PDF finish before adding your question. 🙏🏾")
st.write(css, unsafe_allow_html=True)
# set huggingface hub token in st.text_input widget
# then hide the input
huggingface_token = st.text_input("Enter your HuggingFace Hub token", type="password", value="DNTClESFouRJbgsoxTzdLFzYfIlGSVsWvM")
#openai_api_key = st.text_input("Enter your OpenAI API key", type="password")
if not huggingface_token.startswith("hf_"):
huggingface_token = "hf_" + huggingface_token
# set this key as an environment variable
os.environ["HUGGINGFACEHUB_API_TOKEN"] = huggingface_token
#os.environ["OPENAI_API_KEY"] = openai_api_key
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
with st.sidebar:
st.subheader("Your documents")
pdf_docs = st.file_uploader(
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True
)
if st.button("Process"):
with st.spinner("Processing"):
# get the raw text
pages = get_pdf_pages(pdf_docs)
# get the text chunks
text_chunks = get_text_chunks(pages)
# create vector store
vectorstore = get_vectorstore(text_chunks)
# create conversation chain
st.session_state.conversation = get_conversation_chain(vectorstore)
print(st.session_state.conversation)
st.header("Chat with a Bot 🤖🦾 that tries to answer questions about multiple PDFs :books:")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
handle_userinput(user_question)
if __name__ == "__main__":
main()