File size: 11,069 Bytes
a151662
 
3f50d8b
4beb7b0
274c53e
86bde80
acf945a
274c53e
4beb7b0
 
274c53e
fe8dc94
d020550
 
4beb7b0
54c8cc7
69fc297
cea66bb
d020550
4beb7b0
67cd4b7
 
 
 
 
 
 
4beb7b0
 
d020550
 
4beb7b0
 
 
 
 
 
 
 
3f50d8b
4beb7b0
3f50d8b
 
4beb7b0
fea1af2
 
 
 
 
 
274c53e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0840e8a
 
274c53e
 
0840e8a
274c53e
fea1af2
4beb7b0
274c53e
3f50d8b
b2ba730
3f50d8b
d721c76
 
 
 
3f50d8b
 
 
 
 
 
 
 
 
b2ba730
 
fe8dc94
 
 
 
4beb7b0
3f50d8b
67cd4b7
 
 
 
 
 
3f50d8b
 
274c53e
 
 
 
 
 
 
 
 
 
e8f0ec0
274c53e
 
67cd4b7
 
 
3f50d8b
 
 
 
4520e07
 
 
 
 
 
 
 
 
 
 
cb29b7d
830073a
3f50d8b
4520e07
3dcae65
4520e07
 
1e07c47
4520e07
3f50d8b
 
 
4520e07
67cd4b7
4beb7b0
67cd4b7
 
 
3f50d8b
67cd4b7
4beb7b0
 
67cd4b7
c059db6
 
 
 
 
 
9fade90
 
3dcae65
1b9551a
 
8c99bd8
3dcae65
67cd4b7
 
3f50d8b
 
1b9551a
 
 
 
 
 
 
 
 
 
 
 
 
 
3dcae65
 
 
9a04097
3dcae65
 
b403d85
 
3f50d8b
0abb3c4
3f50d8b
830073a
3f50d8b
b403d85
3f50d8b
9fade90
1b9551a
 
3dcae65
 
3f50d8b
 
b403d85
9fade90
 
9f7a757
1b9551a
c1adcd7
b403d85
3f50d8b
b403d85
 
 
 
 
 
3dcae65
3f50d8b
 
67cd4b7
 
 
 
 
 
1c2b19b
71e2f90
22aa66a
 
 
67cd4b7
 
 
 
22aa66a
 
 
 
 
 
 
67cd4b7
 
 
 
 
 
22aa66a
 
 
ff1b047
9a04097
 
 
 
 
 
ff1b047
816de41
ff1b047
 
acf945a
 
d020550
ff1b047
 
 
 
 
 
 
 
5979d39
ff1b047
 
224565b
ff1b047
5979d39
9a04097
ff1b047
 
acf945a
 
 
9a04097
acf945a
 
5979d39
acf945a
 
 
 
 
 
 
 
 
816de41
1d55f55
816de41
 
4beb7b0
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
from fastapi import FastAPI, UploadFile, File
from fastapi.responses import FileResponse
from datasets import load_dataset
from fastapi.middleware.cors import CORSMiddleware
import pdfplumber
import pytesseract
from models import Article, Chapter, Law

# Loading
import os
import zipfile
import shutil
from os import makedirs,getcwd
from os.path import join,exists,dirname
import torch
import json
from haystack_integrations.document_stores.qdrant import QdrantDocumentStore

app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

NUM_PROC = os.cpu_count()
parent_path  = dirname(getcwd())

temp_path  = join(parent_path,'temp')
if not exists(temp_path ):
    makedirs(temp_path )

# Determine device based on GPU availability
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")

import logging

logging.basicConfig(format="%(levelname)s - %(name)s -  %(message)s", level=logging.WARNING)
logging.getLogger("haystack").setLevel(logging.INFO)

document_store = QdrantDocumentStore(
        path="database",
        recreate_index=True,
        use_sparse_embeddings=True,
        embedding_dim = 384
    )

def extract_zip(zip_path, target_folder):
    """
    Extracts all files from a ZIP archive and returns a list of their paths.

    Args:
        zip_path (str): Path to the ZIP file.
        target_folder (str): Folder where the files will be extracted.

    Returns:
        List[str]: List of extracted file paths.
    """
    extracted_files = []
    with zipfile.ZipFile(zip_path, 'r') as zip_ref:
        zip_ref.extractall(target_folder)
        for filename in zip_ref.namelist():
            extracted_files.append(os.path.join(target_folder, filename))
    return extracted_files


def extract_text_from_pdf(pdf_path):
    with pdfplumber.open(pdf_path) as pdf:
        text = ""
        for page in pdf.pages:
            text += page.extract_text()
    return text

def extract_ocr_text_from_pdf(pdf_path):
    from pdf2image import convert_from_path
    images = convert_from_path(pdf_path)

    text= ""
    
    for image in images:
        text += pytesseract.image_to_string(image,lang='vie')
        
    return text
    
@app.post("/uploadfile/")
async def create_upload_file(text_field: str, file: UploadFile = File(...), ocr:bool=False):
    # Imports
    import time
    from haystack import Document, Pipeline
    from haystack.components.writers import DocumentWriter    
    from haystack.components.preprocessors import DocumentSplitter, DocumentCleaner
    from haystack.components.joiners import DocumentJoiner

    from haystack_integrations.components.retrievers.qdrant import QdrantHybridRetriever
    from haystack.document_stores.types import DuplicatePolicy
    from haystack_integrations.components.embedders.fastembed import (
     FastembedTextEmbedder,
     FastembedDocumentEmbedder,
     FastembedSparseTextEmbedder,
     FastembedSparseDocumentEmbedder
    )
    
    start_time = time.time()
    
    file_savePath =  join(temp_path,file.filename)

    with open(file_savePath,'wb') as f:
        shutil.copyfileobj(file.file, f)
    
    documents=[]
    
    # Here you can save the file and do other operations as needed
    if '.json' in file_savePath:
        with open(file_savePath) as fd:
            for line in fd:
                obj = json.loads(line)
                document = Document(content=obj[text_field], meta=obj) 
                documents.append(document)

    elif '.zip' in file_savePath:
        extracted_files_list = extract_zip(file_savePath, temp_path)
        print("Extracted files:")
        for file_path in extracted_files_list:
            if '.pdf' in file_path:
                if ocr:
                    text = extract_ocr_text_from_pdf(file_path)
                else:                    
                    text = extract_text_from_pdf(file_path)
                obj = {text_field:text,file_path:file_path}
                document = Document(content=obj[text_field], meta=obj) 
                documents.append(document)
    else:
        raise NotImplementedError("This feature is not supported yet")

    # Indexing
    
    
    indexing = Pipeline()

    document_joiner = DocumentJoiner()


    document_cleaner = DocumentCleaner() 
    
    document_splitter = DocumentSplitter(split_by="word", split_length=1000, split_overlap=0)

    indexing.add_component("document_joiner", document_joiner)
    indexing.add_component("document_cleaner", document_cleaner)
    indexing.add_component("document_splitter", document_splitter)
    indexing.add_component("sparse_doc_embedder", FastembedSparseDocumentEmbedder(model="Qdrant/bm42-all-minilm-l6-v2-attentions"))
    indexing.add_component("dense_doc_embedder", FastembedDocumentEmbedder(model="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"))
    indexing.add_component("writer", DocumentWriter(document_store=document_store, policy=DuplicatePolicy.OVERWRITE))

    
    indexing.connect("document_joiner", "document_cleaner")
    indexing.connect("document_cleaner", "document_splitter")
    indexing.connect("document_splitter", "sparse_doc_embedder")

    indexing.connect("sparse_doc_embedder", "dense_doc_embedder")
    indexing.connect("dense_doc_embedder", "writer")
    
    indexing.run({"document_joiner": {"documents": documents}})
    end_time = time.time()

    elapsed_time = end_time - start_time
    
    return {"filename": file.filename, "message": "Done", "execution_time": elapsed_time}

    
@app.get("/search")
def search(prompt: str):
    import time
    from haystack import Document, Pipeline
    from haystack_integrations.components.retrievers.qdrant import QdrantHybridRetriever
    from haystack_integrations.components.embedders.fastembed import (
     FastembedTextEmbedder,
     FastembedSparseTextEmbedder
    )
    from haystack.components.rankers import TransformersSimilarityRanker
    from haystack.components.joiners import DocumentJoiner
    from haystack.components.generators import OpenAIGenerator
    from haystack.utils import Secret    
    from haystack.components.builders import PromptBuilder
    from QueryMetadataExtractor import QueryMetadataExtractor
    
    start_time = time.time()
    
    # Querying

    
    template = """
    Given the following information, answer the question.
    
    Context:
    {% for document in documents %}
        {{ document.content }}
    {% endfor %}
    
    Question: {{question}}
    Answer:
    """
    
    prompt_builder = PromptBuilder(template=template)
    generator = OpenAIGenerator(
        api_key=Secret.from_env_var("OCTOAI_TOKEN"),
        api_base_url="https://text.octoai.run/v1",
        model="meta-llama-3-8b-instruct",
        generation_kwargs = {"max_tokens": 512}
    )
    metadata_extractor = QueryMetadataExtractor()

    querying = Pipeline()
    querying.add_component("sparse_text_embedder", FastembedSparseTextEmbedder(model="Qdrant/bm42-all-minilm-l6-v2-attentions"))
    querying.add_component("dense_text_embedder", FastembedTextEmbedder(
     model="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2", prefix="Represent this sentence for searching relevant passages: ")
     )
    querying.add_component(instance=metadata_extractor, name="metadata_extractor")
    querying.add_component("retriever", QdrantHybridRetriever(document_store=document_store))
    querying.add_component("document_joiner", DocumentJoiner())
    querying.add_component("ranker", TransformersSimilarityRanker(model="BAAI/bge-m3"))    
    querying.add_component("prompt_builder", prompt_builder)
    querying.add_component("llm", generator)
    
    querying.connect("sparse_text_embedder.sparse_embedding", "retriever.query_sparse_embedding")
    querying.connect("dense_text_embedder.embedding", "retriever.query_embedding")
    querying.connect("metadata_extractor.filters", "retriever.filters")
    querying.connect("retriever", "document_joiner")
    querying.connect("document_joiner", "ranker")
    querying.connect("ranker.documents", "prompt_builder.documents")
    querying.connect("prompt_builder", "llm")
    querying.debug=True
    metadata_fields =  {"publish_date", "publisher", "document_type"}
    results = querying.run(
        {
            "dense_text_embedder": {"text": prompt},
            "sparse_text_embedder": {"text": prompt},
            "metadata_extractor": {"query": prompt, "metadata_fields": metadata_fields},
            "ranker": {"query": prompt},
            "prompt_builder": {"question": prompt}
        }
    )


    end_time = time.time()

    elapsed_time = end_time - start_time

    print(f"Execution time: {elapsed_time:.6f} seconds")
    
    return results

@app.get("/download-database/")
async def download_database():
    import time

    start_time = time.time()
    
    # Path to the database directory
    database_dir = join(os.getcwd(), 'database')
    # Path for the zip file
    zip_path = join(os.getcwd(), 'database.zip')
    
    # Create a zip file of the database directory
    shutil.make_archive(zip_path.replace('.zip', ''), 'zip', database_dir)

    end_time = time.time()

    elapsed_time = end_time - start_time

    print(f"Execution time: {elapsed_time:.6f} seconds")
    
    # Return the zip file as a response for download
    return FileResponse(zip_path, media_type='application/zip', filename='database.zip')

def truncate_text(text: str) -> str:
    if len(text) <= 3000:
        return text
    else:
        return text[:3000]
        
@app.post("/pdf2text/")
async def convert_upload_file(file: UploadFile = File(...)):
    import pytesseract
    from pdf2image import convert_from_path
    from octoai.client import OctoAI
    from octoai.text_gen import ChatCompletionResponseFormat, ChatMessage
    
    file_savePath =  join(temp_path,file.filename)

    with open(file_savePath,'wb') as f:
        shutil.copyfileobj(file.file, f)
    # convert PDF to image
    images = convert_from_path(file_savePath)

    text=""
    first_page = ""

    # Extract text from images
    for image in images:
        ocr_text = pytesseract.image_to_string(image,lang='vie')
        if first_page=="":
            first_page = truncate_text(ocr_text)
        text=text+ocr_text+'\n'
        
    client = OctoAI()

    completion = client.text_gen.create_chat_completion(
        model="meta-llama-3-8b-instruct",
        messages=[
            ChatMessage(role="system", content="You are a helpful assistant."),
            ChatMessage(role="user", content=first_page),
        ],
        presence_penalty=0,
        temperature=0.1,
        top_p=0.9,
        response_format=ChatCompletionResponseFormat(
            type="json_object",
            schema=Law.model_json_schema(),
        ),
    )
    
    return {'content':text,'metadate':completion.choices[0].message.content}

    
@app.get("/")
def api_home():
    return {'detail': 'Welcome to FastAPI Qdrant importer!'}