Spaces:
Sleeping
Sleeping
File size: 8,238 Bytes
a151662 4beb7b0 fe8dc94 d020550 4beb7b0 d020550 cea66bb d020550 4beb7b0 67cd4b7 4beb7b0 d020550 4beb7b0 c066163 4beb7b0 bae4b3b 4beb7b0 3f0b9aa bae4b3b 4beb7b0 c92562c fe8dc94 4beb7b0 fde2b19 5cfedf9 ee073f9 fde2b19 4beb7b0 bae4b3b 4beb7b0 67cd4b7 4beb7b0 67cd4b7 4beb7b0 67cd4b7 4beb7b0 67cd4b7 4beb7b0 67cd4b7 cfb1119 22aa66a 67cd4b7 22aa66a 67cd4b7 22aa66a cea66bb 67cd4b7 cea66bb 67cd4b7 d020550 4beb7b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
from fastapi import FastAPI, UploadFile, File
from fastapi.responses import FileResponse
from fastapi.middleware.cors import CORSMiddleware
# Loading
import os
import shutil
from os import makedirs,getcwd
from os.path import join,exists,dirname
from datasets import load_dataset
import torch
from tqdm import tqdm
from sentence_transformers import SentenceTransformer
import uuid
from qdrant_client import models, QdrantClient
from itertools import islice
# The file where NeuralSearcher is stored
from neural_searcher import NeuralSearcher
# The file where HybridSearcher is stored
from hybrid_searcher import HybridSearcher
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
FILEPATH_PATTERN = "structured_data_doc.parquet"
NUM_PROC = os.cpu_count()
parent_path = dirname(getcwd())
temp_path = join(parent_path,'temp')
if not exists(temp_path ):
makedirs(temp_path )
# Determine device based on GPU availability
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Load the desired model
model = SentenceTransformer(
'sentence-transformers/all-MiniLM-L6-v2',
device=device
)
# Create function to upsert embeddings in batches
def batched(iterable, n):
iterator = iter(iterable)
while batch := list(islice(iterator, n)):
yield batch
batch_size = 100
# Create an in-memory Qdrant instance
client2 = QdrantClient(path="database")
# Create a Qdrant collection for the embeddings
client2.create_collection(
collection_name="law",
vectors_config=models.VectorParams(
size=model.get_sentence_embedding_dimension(),
distance=models.Distance.COSINE,
),
)
# Create function to generate embeddings (in batches) for a given dataset split
def generate_embeddings(dataset, text_field, batch_size=32):
embeddings = []
with tqdm(total=len(dataset), desc=f"Generating embeddings for dataset") as pbar:
for i in range(0, len(dataset), batch_size):
print(dataset)
batch_sentences = dataset[text_field][i:i+batch_size]
batch_embeddings = model.encode(batch_sentences)
embeddings.extend(batch_embeddings)
pbar.update(len(batch_sentences))
return embeddings
@app.post("/uploadfile/")
async def create_upload_file(text_field: str, file: UploadFile = File(...)):
file_savePath = join(temp_path,file.filename)
with open(file_savePath,'wb') as f:
shutil.copyfileobj(file.file, f)
# Here you can save the file and do other operations as needed
if '.json' in file_savePath:
full_dataset = load_dataset('json',
data_files=file_savePath,
split="train",
cache_dir=temp_path,
keep_in_memory=True,
num_proc=NUM_PROC*2)
elif '.parquet' in file_savePath:
full_dataset = load_dataset("parquet",
data_files=file_savePath,
split="train",
cache_dir=temp_path,
keep_in_memory=True,
num_proc=NUM_PROC*2)
else:
raise NotImplementedError("This feature is not supported yet")
# Generate and append embeddings to the train split
law_embeddings = generate_embeddings(full_dataset, text_field)
full_dataset= full_dataset.add_column("embeddings", law_embeddings)
if not 'uuid' in full_dataset.column_names:
full_dataset = full_dataset.add_column('uuid', [str(uuid.uuid4()) for _ in range(len(full_dataset))])
# Upsert the embeddings in batches
for batch in batched(full_dataset, batch_size):
ids = [point.pop("uuid") for point in batch]
vectors = [point.pop("embeddings") for point in batch]
client2.upsert(
collection_name="law",
points=models.Batch(
ids=ids,
vectors=vectors,
payloads=batch,
),
)
return {"filename": file.filename, "message": "Done"}
@app.post("/uploadfile4hypersearch/")
async def upload_file_4_hyper_search(collection_name: str, text_field: str, file: UploadFile = File(...)):
import time
start_time = time.time()
file_savePath = join(temp_path,file.filename)
client2.set_model("sentence-transformers/all-MiniLM-L6-v2")
# comment this line to use dense vectors only
client2.set_sparse_model("prithivida/Splade_PP_en_v1")
with open(file_savePath,'wb') as f:
shutil.copyfileobj(file.file, f)
print(f"Uploaded complete!")
client2.recreate_collection(
collection_name=collection_name,
vectors_config=client2.get_fastembed_vector_params(),
# comment this line to use dense vectors only
sparse_vectors_config=client2.get_fastembed_sparse_vector_params(),
)
print(f"The collection is created complete!")
# Here you can save the file and do other operations as needed
if '.json' in file_savePath:
import json
metadata = []
documents = []
with open(file_savePath) as fd:
for line in fd:
obj = json.loads(line)
documents.append(obj.pop(text_field))
metadata.append(obj)
print(f"The documents and metadata is parsed complete!")
client2.add(
collection_name=collection_name,
documents=documents,
metadata=metadata,
parallel=0, # Use all available CPU cores to encode data.
# Requires wrapping code into if __name__ == '__main__' block
)
print(f"The documents and metadata is upserted complete!")
else:
raise NotImplementedError("This feature is not supported yet")
end_time = time.time()
elapsed_time = end_time - start_time
return {"filename": file.filename, "message": "Done", "execution_time": elapsed_time}
@app.get("/search")
def search(prompt: str):
import time
start_time = time.time()
# Let's see what senators are saying about immigration policy
hits = client2.search(
collection_name="law",
query_vector=model.encode(prompt).tolist(),
limit=5
)
for hit in hits:
print(hit.payload, "score:", hit.score)
end_time = time.time()
elapsed_time = end_time - start_time
print(f"Execution time: {elapsed_time:.6f} seconds")
return hits
@app.get("/download-database/")
async def download_database():
import time
start_time = time.time()
# Path to the database directory
database_dir = join(os.getcwd(), 'database')
# Path for the zip file
zip_path = join(os.getcwd(), 'database.zip')
# Create a zip file of the database directory
shutil.make_archive(zip_path.replace('.zip', ''), 'zip', database_dir)
end_time = time.time()
elapsed_time = end_time - start_time
print(f"Execution time: {elapsed_time:.6f} seconds")
# Return the zip file as a response for download
return FileResponse(zip_path, media_type='application/zip', filename='database.zip')
@app.get("/neural_search")
def neural_search(q: str, city: str, collection_name: str):
import time
start_time = time.time()
# Create a neural searcher instance
neural_searcher = NeuralSearcher(collection_name=collection_name)
end_time = time.time()
elapsed_time = end_time - start_time
return {"result": neural_searcher.search(text=q, city=city), "execution_time": elapsed_time}
@app.get("/hybrid_search")
def hybrid_search(q: str, city: str, collection_name: str):
import time
start_time = time.time()
# Create a hybrid searcher instance
hybrid_searcher = HybridSearcher(collection_name=collection_name)
end_time = time.time()
elapsed_time = end_time - start_time
return {"result": hybrid_searcher.search(text=q, city=city), "execution_time": elapsed_time}
@app.get("/")
def api_home():
return {'detail': 'Welcome to FastAPI Qdrant importer!'}
|