Spaces:
Runtime error
Runtime error
dinhquangson
commited on
Commit
•
05c83f3
1
Parent(s):
3fb0b01
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,93 @@
|
|
1 |
from fastapi import FastAPI, UploadFile, File
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
app = FastAPI()
|
5 |
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
@app.post("/uploadfile/")
|
8 |
async def create_upload_file(file: UploadFile = File(...)):
|
9 |
# Here you can save the file and do other operations as needed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
return {"filename": file.filename, "message": "Done"}
|
11 |
|
12 |
app.add_middleware(
|
@@ -17,6 +98,18 @@ app.add_middleware(
|
|
17 |
allow_headers=["*"],
|
18 |
)
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
@app.get("/")
|
21 |
def api_home():
|
22 |
return {'detail': 'Welcome to FastAPI Qdrant importer!'}
|
|
|
1 |
from fastapi import FastAPI, UploadFile, File
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
# Loading
|
4 |
+
import os
|
5 |
+
from datasets import load_dataset
|
6 |
+
import torch
|
7 |
+
from tqdm import tqdm
|
8 |
+
from sentence_transformers import SentenceTransformer
|
9 |
+
import uuid
|
10 |
+
from qdrant_client import models, QdrantClient
|
11 |
+
from itertools import islice
|
12 |
+
|
13 |
+
# Create function to upsert embeddings in batches
|
14 |
+
def batched(iterable, n):
|
15 |
+
iterator = iter(iterable)
|
16 |
+
while batch := list(islice(iterator, n)):
|
17 |
+
yield batch
|
18 |
+
|
19 |
+
batch_size = 100
|
20 |
+
# Create an in-memory Qdrant instance
|
21 |
+
client2 = QdrantClient(path ="database.db")
|
22 |
+
|
23 |
+
# Create a Qdrant collection for the embeddings
|
24 |
+
client2.create_collection(
|
25 |
+
collection_name="law",
|
26 |
+
vectors_config=models.VectorParams(
|
27 |
+
size=model.get_sentence_embedding_dimension(),
|
28 |
+
distance=models.Distance.COSINE,
|
29 |
+
),
|
30 |
+
)
|
31 |
+
|
32 |
+
# Determine device based on GPU availability
|
33 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
34 |
+
print(f"Using device: {device}")
|
35 |
+
|
36 |
+
FILEPATH_PATTERN = "structured_data_doc.parquet"
|
37 |
+
CACHE_DIR = "/.cache"
|
38 |
+
NUM_PROC = os.cpu_count()
|
39 |
+
|
40 |
|
41 |
app = FastAPI()
|
42 |
|
43 |
|
44 |
+
|
45 |
+
# Load the desired model
|
46 |
+
model = SentenceTransformer(
|
47 |
+
'sentence-transformers/all-MiniLM-L6-v2',
|
48 |
+
device=device
|
49 |
+
)
|
50 |
+
# Create function to generate embeddings (in batches) for a given dataset split
|
51 |
+
def generate_embeddings(dataset, batch_size=32):
|
52 |
+
embeddings = []
|
53 |
+
|
54 |
+
with tqdm(total=len(dataset), desc=f"Generating embeddings for dataset") as pbar:
|
55 |
+
for i in range(0, len(dataset), batch_size):
|
56 |
+
batch_sentences = dataset['content'][i:i+batch_size]
|
57 |
+
batch_embeddings = model.encode(batch_sentences)
|
58 |
+
embeddings.extend(batch_embeddings)
|
59 |
+
pbar.update(len(batch_sentences))
|
60 |
+
|
61 |
+
return embeddings
|
62 |
+
|
63 |
@app.post("/uploadfile/")
|
64 |
async def create_upload_file(file: UploadFile = File(...)):
|
65 |
# Here you can save the file and do other operations as needed
|
66 |
+
full_dataset = load_dataset("parquet",
|
67 |
+
data_files=FILEPATH_PATTERN,
|
68 |
+
split="train",
|
69 |
+
keep_in_memory=True,
|
70 |
+
cache_dir=CACHE_DIR,
|
71 |
+
num_proc=NUM_PROC*2)
|
72 |
+
# Generate and append embeddings to the train split
|
73 |
+
law_embeddings = generate_embeddings(full_dataset)
|
74 |
+
full_dataset= full_dataset.add_column("embeddings", law_embeddings)
|
75 |
+
|
76 |
+
if not 'uuid' in full_dataset.column_names:
|
77 |
+
full_dataset = full_dataset.add_column('uuid', [str(uuid.uuid4()) for _ in range(len(full_dataset))])
|
78 |
+
# Upsert the embeddings in batches
|
79 |
+
for batch in batched(full_dataset, batch_size):
|
80 |
+
ids = [point.pop("uuid") for point in batch]
|
81 |
+
vectors = [point.pop("embeddings") for point in batch]
|
82 |
+
|
83 |
+
client2.upsert(
|
84 |
+
collection_name="law",
|
85 |
+
points=models.Batch(
|
86 |
+
ids=ids,
|
87 |
+
vectors=vectors,
|
88 |
+
payloads=batch,
|
89 |
+
),
|
90 |
+
)
|
91 |
return {"filename": file.filename, "message": "Done"}
|
92 |
|
93 |
app.add_middleware(
|
|
|
98 |
allow_headers=["*"],
|
99 |
)
|
100 |
|
101 |
+
@app.get("/search")
|
102 |
+
def search(prompt: str):
|
103 |
+
# Let's see what senators are saying about immigration policy
|
104 |
+
hits = client2.search(
|
105 |
+
collection_name="law",
|
106 |
+
query_vector=model.encode(prompt).tolist(),
|
107 |
+
limit=5
|
108 |
+
)
|
109 |
+
for hit in hits:
|
110 |
+
print(hit.payload, "score:", hit.score)
|
111 |
+
return {'detail': 'hit.payload', 'score:', hit.score}
|
112 |
+
|
113 |
@app.get("/")
|
114 |
def api_home():
|
115 |
return {'detail': 'Welcome to FastAPI Qdrant importer!'}
|