Spaces:
Runtime error
Runtime error
dippatel1994
commited on
Commit
•
d6cf304
1
Parent(s):
cf42d38
Create app.py
Browse filesAdding a code in app.py to prepare UI and use Google's Bert language model for generating answers of asked questions on research paper content.
app.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
from transformers import AutoTokenizer, TFAutoModelForQuestionAnswering
|
4 |
+
|
5 |
+
|
6 |
+
class ResearchPaperQAModel:
|
7 |
+
"""Class to load the model and answer questions based on abstract and text of reserach paper.
|
8 |
+
"""
|
9 |
+
def __init__(self, model_name):
|
10 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
+
self.model = TFAutoModelForQuestionAnswering.from_pretrained(model_name)
|
12 |
+
|
13 |
+
def answer_question(self, question, abstract, paper_text):
|
14 |
+
# Tokenize input question and context
|
15 |
+
if not paper_text:
|
16 |
+
context = abstract
|
17 |
+
else:
|
18 |
+
context = paper_text
|
19 |
+
|
20 |
+
inputs = self.tokenizer(question, context, return_tensors="tf")
|
21 |
+
|
22 |
+
# Get the start and end logits for the answer
|
23 |
+
outputs = self.model(**inputs)
|
24 |
+
start_logits, end_logits = outputs.start_logits[0].numpy(), outputs.end_logits[0].numpy()
|
25 |
+
|
26 |
+
# Find the tokens with the highest probability for start and end positions
|
27 |
+
start_index = tf.argmax(start_logits, axis=-1).numpy()
|
28 |
+
end_index = tf.argmax(end_logits, axis=-1).numpy()
|
29 |
+
|
30 |
+
# Convert token indices to actual tokens
|
31 |
+
tokens = self.tokenizer.convert_ids_to_tokens(inputs["input_ids"].numpy().squeeze())
|
32 |
+
answer_tokens = tokens[start_index : end_index + 1]
|
33 |
+
|
34 |
+
# Convert answer tokens back to a string
|
35 |
+
answer = self.tokenizer.convert_tokens_to_string(answer_tokens)
|
36 |
+
|
37 |
+
return answer
|
38 |
+
|
39 |
+
|
40 |
+
model = "bert-large-uncased-whole-word-masking-finetuned-squad" # Model name
|
41 |
+
paper_model = ResearchPaperQAModel(model) #Create an instance of the model
|
42 |
+
|
43 |
+
# Create a Gradio interface
|
44 |
+
iface = gr.Interface(
|
45 |
+
fn=paper_model.answer_question,
|
46 |
+
inputs=["text", "text", "text"],
|
47 |
+
outputs="text",
|
48 |
+
live=True,
|
49 |
+
title="Ask question to research paper",
|
50 |
+
description="Enter title of research paper, abstract, research paper content(optional) and list of questions to get answers."
|
51 |
+
)
|
52 |
+
|
53 |
+
# Launch the Gradio interface
|
54 |
+
iface.launch(share=True)
|