Spaces:
Runtime error
Runtime error
dippatel1994
commited on
Commit
•
eff7d81
1
Parent(s):
a9a35c7
Update app.py
Browse files
app.py
CHANGED
@@ -1,54 +1,41 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
from transformers import
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
""
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
#
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
#
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
# Create a Gradio interface
|
44 |
-
iface = gr.Interface(
|
45 |
-
fn=paper_model.answer_question,
|
46 |
-
inputs=["text", "text", "text"],
|
47 |
-
outputs="text",
|
48 |
-
live=True,
|
49 |
-
title="Ask question to research paper",
|
50 |
-
description="Enter title of research paper, abstract, research paper content(optional) and list of questions to get answers."
|
51 |
-
)
|
52 |
-
|
53 |
-
# Launch the Gradio interface
|
54 |
-
iface.launch(share=True)
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import requests
|
3 |
+
from transformers import pipeline, BertTokenizer
|
4 |
+
|
5 |
+
# Function to generate answers using the BERT model
|
6 |
+
def generate_answers(chunks, question):
|
7 |
+
# Initialize the BERT tokenizer
|
8 |
+
tokenizer = BertTokenizer.from_pretrained("bert-large-uncased-whole-word-masking-finetuned-squad")
|
9 |
+
|
10 |
+
# Initialize the question-answering pipeline
|
11 |
+
model = pipeline("question-answering", model="bert-large-uncased-whole-word-masking-finetuned-squad")
|
12 |
+
|
13 |
+
# Concatenate chunks into a single text
|
14 |
+
paper_text = ' '.join(chunks)
|
15 |
+
|
16 |
+
# Generate answers for the question based on the entire context
|
17 |
+
answer = model(question, paper_text)
|
18 |
+
return answer['answer']
|
19 |
+
|
20 |
+
# Streamlit app
|
21 |
+
st.title("Research Paper Question Answering")
|
22 |
+
|
23 |
+
paper_link = st.text_input("Enter the link to the research paper (Arxiv link):")
|
24 |
+
question = st.text_input("Enter your question:")
|
25 |
+
|
26 |
+
if st.button("Generate Answer"):
|
27 |
+
if not (paper_link and question):
|
28 |
+
st.warning("Please provide both the paper link and the question.")
|
29 |
+
else:
|
30 |
+
# Download the research paper
|
31 |
+
response = requests.get(paper_link)
|
32 |
+
paper_text = response.text
|
33 |
+
|
34 |
+
# Split the paper text into chunks of 512 words
|
35 |
+
paper_chunks = [paper_text[i:i+512] for i in range(0, len(paper_text), 512)]
|
36 |
+
|
37 |
+
# Generate answer based on chunks
|
38 |
+
answer = generate_answers(paper_chunks, question)
|
39 |
+
st.success("Answer generated successfully!")
|
40 |
+
st.text("Generated Answer:")
|
41 |
+
st.write(answer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|