dippatel1994 commited on
Commit
eff7d81
1 Parent(s): a9a35c7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -54
app.py CHANGED
@@ -1,54 +1,41 @@
1
- import gradio as gr
2
- import tensorflow as tf
3
- from transformers import AutoTokenizer, TFAutoModelForQuestionAnswering
4
-
5
-
6
- class ResearchPaperQAModel:
7
- """Class to load the model and answer questions based on abstract and text of reserach paper.
8
- """
9
- def __init__(self, model_name):
10
- self.tokenizer = AutoTokenizer.from_pretrained(model_name)
11
- self.model = TFAutoModelForQuestionAnswering.from_pretrained(model_name)
12
-
13
- def answer_question(self, question, abstract, paper_text):
14
- # Tokenize input question and context
15
- if not paper_text:
16
- context = abstract
17
- else:
18
- context = paper_text
19
-
20
- inputs = self.tokenizer(question, context, return_tensors="tf")
21
-
22
- # Get the start and end logits for the answer
23
- outputs = self.model(**inputs)
24
- start_logits, end_logits = outputs.start_logits[0].numpy(), outputs.end_logits[0].numpy()
25
-
26
- # Find the tokens with the highest probability for start and end positions
27
- start_index = tf.argmax(start_logits, axis=-1).numpy()
28
- end_index = tf.argmax(end_logits, axis=-1).numpy()
29
-
30
- # Convert token indices to actual tokens
31
- tokens = self.tokenizer.convert_ids_to_tokens(inputs["input_ids"].numpy().squeeze())
32
- answer_tokens = tokens[start_index : end_index + 1]
33
-
34
- # Convert answer tokens back to a string
35
- answer = self.tokenizer.convert_tokens_to_string(answer_tokens)
36
-
37
- return answer
38
-
39
-
40
- model = "bert-large-uncased-whole-word-masking-finetuned-squad" # Model name
41
- paper_model = ResearchPaperQAModel(model) #Create an instance of the model
42
-
43
- # Create a Gradio interface
44
- iface = gr.Interface(
45
- fn=paper_model.answer_question,
46
- inputs=["text", "text", "text"],
47
- outputs="text",
48
- live=True,
49
- title="Ask question to research paper",
50
- description="Enter title of research paper, abstract, research paper content(optional) and list of questions to get answers."
51
- )
52
-
53
- # Launch the Gradio interface
54
- iface.launch(share=True)
 
1
+ import streamlit as st
2
+ import requests
3
+ from transformers import pipeline, BertTokenizer
4
+
5
+ # Function to generate answers using the BERT model
6
+ def generate_answers(chunks, question):
7
+ # Initialize the BERT tokenizer
8
+ tokenizer = BertTokenizer.from_pretrained("bert-large-uncased-whole-word-masking-finetuned-squad")
9
+
10
+ # Initialize the question-answering pipeline
11
+ model = pipeline("question-answering", model="bert-large-uncased-whole-word-masking-finetuned-squad")
12
+
13
+ # Concatenate chunks into a single text
14
+ paper_text = ' '.join(chunks)
15
+
16
+ # Generate answers for the question based on the entire context
17
+ answer = model(question, paper_text)
18
+ return answer['answer']
19
+
20
+ # Streamlit app
21
+ st.title("Research Paper Question Answering")
22
+
23
+ paper_link = st.text_input("Enter the link to the research paper (Arxiv link):")
24
+ question = st.text_input("Enter your question:")
25
+
26
+ if st.button("Generate Answer"):
27
+ if not (paper_link and question):
28
+ st.warning("Please provide both the paper link and the question.")
29
+ else:
30
+ # Download the research paper
31
+ response = requests.get(paper_link)
32
+ paper_text = response.text
33
+
34
+ # Split the paper text into chunks of 512 words
35
+ paper_chunks = [paper_text[i:i+512] for i in range(0, len(paper_text), 512)]
36
+
37
+ # Generate answer based on chunks
38
+ answer = generate_answers(paper_chunks, question)
39
+ st.success("Answer generated successfully!")
40
+ st.text("Generated Answer:")
41
+ st.write(answer)