Spaces:
Runtime error
Runtime error
File size: 5,187 Bytes
7091430 5d7014c 7091430 2ad1599 7091430 80ca55c 7091430 80ca55c 7091430 5d7014c 7091430 213b090 7091430 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from transformers.utils import is_flash_attn_2_available
import torch
import gradio as gr
import matplotlib.pyplot as plt
import time
import os
BATCH_SIZE = 16
# TODO: remove token before release and update ckpt path
TOKEN = os.environ.get("HF_TOKEN", None)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
use_flash_attention_2 = is_flash_attn_2_available()
model = AutoModelForSpeechSeq2Seq.from_pretrained(
"openai/whisper-large-v2", torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, use_flash_attention_2=use_flash_attention_2
)
distilled_model = AutoModelForSpeechSeq2Seq.from_pretrained(
"sanchit-gandhi/distil-large-v2-private", torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, use_flash_attention_2=use_flash_attention_2, token=TOKEN
)
if not use_flash_attention_2:
model = model.to_bettertransformer()
distilled_model = distilled_model.to_bettertransformer()
processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en")
model.to(device)
distilled_model.to(device)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=30,
torch_dtype=torch_dtype,
device=device,
generate_kwargs={"language": "en", "task": "transcribe"},
)
pipe_forward = pipe._forward
distil_pipe = pipeline(
"automatic-speech-recognition",
model=distilled_model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=15,
torch_dtype=torch_dtype,
device=device,
)
distil_pipe_forward = distil_pipe._forward
def transcribe(inputs):
if inputs is None:
raise gr.Error("No audio file submitted! Please record or upload an audio file before submitting your request.")
def _forward_distil_time(*args, **kwargs):
global distil_runtime
start_time = time.time()
result = distil_pipe_forward(*args, **kwargs)
distil_runtime = time.time() - start_time
return result
distil_pipe._forward = _forward_distil_time
distil_text = distil_pipe(inputs, batch_size=BATCH_SIZE)["text"]
yield distil_text, distil_runtime, None, None, None
def _forward_time(*args, **kwargs):
global runtime
start_time = time.time()
result = pipe_forward(*args, **kwargs)
runtime = time.time() - start_time
return result
pipe._forward = _forward_time
text = pipe(inputs, batch_size=BATCH_SIZE)["text"]
# Create figure and axis
fig, ax = plt.subplots(figsize=(5, 5))
# Define bar width and positions
bar_width = 0.1
positions = [0, 0.1] # Adjusted positions to bring bars closer
# Plot data
ax.bar(positions[0], distil_runtime, bar_width, edgecolor='black')
ax.bar(positions[1], runtime, bar_width, edgecolor='black')
# Set title, labels, and xticks
ax.set_ylabel('Transcription time (s)')
ax.set_xticks(positions)
ax.set_xticklabels(['Distil-Whisper', 'Whisper'])
# Gridlines and other styling
ax.grid(which='major', axis='y', linestyle='--', linewidth=0.5)
# Use tight layout to avoid overlaps
plt.tight_layout()
yield distil_text, distil_runtime, text, runtime, plt
if __name__ == "__main__":
with gr.Blocks() as demo:
gr.HTML(
"""
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
Distil-Whisper VS Whisper
</h1>
</div>
</div>
"""
)
gr.HTML(
f"""
This demo evaluates the <a href="https://huggingface.co/distil-whisper/distil-large-v2"> Distil-Whisper </a> model
against the <a href="https://huggingface.co/openai/whisper-large-v2"> Whisper </a> model.
"""
)
audio = gr.components.Audio(type="filepath", label="Audio input")
button = gr.Button("Transcribe")
plot = gr.components.Plot()
with gr.Row():
distil_runtime = gr.components.Textbox(label="Distil-Whisper Transcription Time (s)")
runtime = gr.components.Textbox(label="Whisper Transcription Time (s)")
with gr.Row():
distil_transcription = gr.components.Textbox(label="Distil-Whisper Transcription", show_copy_button=True)
transcription = gr.components.Textbox(label="Whisper Transcription", show_copy_button=True)
button.click(
fn=transcribe,
inputs=audio,
outputs=[distil_transcription, distil_runtime, transcription, runtime, plot],
)
demo.queue().launch() |