sanchit-gandhi's picture
create app.py
7091430
raw
history blame
5.22 kB
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from transformers.utils import is_flash_attn_2_available
import torch
import gradio as gr
import matplotlib.pyplot as plt
import time
import os
BATCH_SIZE = 16
TOKEN = os.environ.get("HF_TOKEN", None)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
use_flash_attention_2 = is_flash_attn_2_available()
model = AutoModelForSpeechSeq2Seq.from_pretrained(
"openai/whisper-large-v2", torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, use_flash_attention_2=use_flash_attention_2
)
distilled_model = AutoModelForSpeechSeq2Seq.from_pretrained(
"sanchit-gandhi/distil-large-v2-private", torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, use_flash_attention_2=use_flash_attention_2, token=TOKEN
)
if not use_flash_attention_2:
model = model.bettertransformer()
distilled_model = distilled_model.bettertransformer()
processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en")
model.to(device)
distilled_model.to(device)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=30,
torch_dtype=torch_dtype,
device=device,
language="en",
task="transcribe",
)
pipe_forward = pipe._forward
distil_pipe = pipeline(
"automatic-speech-recognition",
model=distilled_model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=15,
torch_dtype=torch_dtype,
device=device,
language="en",
task="transcribe",
)
distil_pipe_forward = distil_pipe._forward
def transcribe(inputs):
if inputs is None:
raise gr.Error("No audio file submitted! Please record or upload an audio file before submitting your request.")
def _forward_distil_time(*args, **kwargs):
global distil_runtime
start_time = time.time()
result = distil_pipe_forward(*args, **kwargs)
distil_runtime = time.time() - start_time
return result
distil_pipe._forward = _forward_distil_time
distil_text = distil_pipe(inputs, batch_size=BATCH_SIZE)["text"]
yield distil_text, distil_runtime, None, None, None
def _forward_time(*args, **kwargs):
global runtime
start_time = time.time()
result = pipe_forward(*args, **kwargs)
runtime = time.time() - start_time
return result
pipe._forward = _forward_time
text = pipe(inputs, batch_size=BATCH_SIZE)["text"]
relative_latency = runtime / distil_runtime
# Create figure and axis
fig, ax = plt.subplots(figsize=(5, 5))
# Define bar width and positions
bar_width = 0.1
positions = [0, 0.1] # Adjusted positions to bring bars closer
# Plot data
ax.bar(positions[0], distil_runtime, bar_width, edgecolor='black')
ax.bar(positions[1], runtime, bar_width, edgecolor='black')
# Set title, labels, and xticks
ax.set_ylabel('Transcription time (s)')
ax.set_xticks(positions)
ax.set_xticklabels(['Distil-Whisper', 'Whisper'])
# Gridlines and other styling
ax.grid(which='major', axis='y', linestyle='--', linewidth=0.5)
# Use tight layout to avoid overlaps
plt.tight_layout()
yield distil_text, distil_runtime, text, runtime, plt
if __name__ == "__main__":
with gr.Blocks() as demo:
gr.HTML(
"""
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
Distil-Whisper VS Whisper
</h1>
</div>
</div>
"""
)
gr.HTML(
f"""
This demo evaluates the <a href="https://huggingface.co/distil-whisper/distil-large-v2"> Distil-Whisper </a> model
against the <a href="https://huggingface.co/openai/whisper-large-v2"> Whisper </a> model.
"""
)
audio = gr.components.Audio(source="upload", type="filepath", label="Audio file")
button = gr.Button("Transcribe")
plot = gr.components.Plot()
with gr.Row():
distil_runtime = gr.components.Textbox(label="Distil-Whisper Transcription Time (s)")
runtime = gr.components.Textbox(label="Whisper Transcription Time (s)")
with gr.Row():
distil_transcription = gr.components.Textbox(label="Distil-Whisper Transcription").style(show_copy_button=True)
transcription = gr.components.Textbox(label="Whisper Transcription").style(show_copy_button=True)
button.click(
fn=transcribe,
inputs=audio,
outputs=[distil_transcription, distil_runtime, transcription, runtime, plot],
)
demo.queue().launch()