Spaces:
Runtime error
Runtime error
File size: 5,665 Bytes
e6035a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import os
import math
import cv2
import trimesh
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import nvdiffrast.torch as dr
from mesh import Mesh, safe_normalize
def scale_img_nhwc(x, size, mag='bilinear', min='bilinear'):
assert (x.shape[1] >= size[0] and x.shape[2] >= size[1]) or (x.shape[1] < size[0] and x.shape[2] < size[1]), "Trying to magnify image in one dimension and minify in the other"
y = x.permute(0, 3, 1, 2) # NHWC -> NCHW
if x.shape[1] > size[0] and x.shape[2] > size[1]: # Minification, previous size was bigger
y = torch.nn.functional.interpolate(y, size, mode=min)
else: # Magnification
if mag == 'bilinear' or mag == 'bicubic':
y = torch.nn.functional.interpolate(y, size, mode=mag, align_corners=True)
else:
y = torch.nn.functional.interpolate(y, size, mode=mag)
return y.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC
def scale_img_hwc(x, size, mag='bilinear', min='bilinear'):
return scale_img_nhwc(x[None, ...], size, mag, min)[0]
def scale_img_nhw(x, size, mag='bilinear', min='bilinear'):
return scale_img_nhwc(x[..., None], size, mag, min)[..., 0]
def scale_img_hw(x, size, mag='bilinear', min='bilinear'):
return scale_img_nhwc(x[None, ..., None], size, mag, min)[0, ..., 0]
def trunc_rev_sigmoid(x, eps=1e-6):
x = x.clamp(eps, 1 - eps)
return torch.log(x / (1 - x))
def make_divisible(x, m=8):
return int(math.ceil(x / m) * m)
class Renderer(nn.Module):
def __init__(self, opt):
super().__init__()
self.opt = opt
self.mesh = Mesh.load(self.opt.mesh, resize=False)
if not self.opt.force_cuda_rast and (not self.opt.gui or os.name == 'nt'):
self.glctx = dr.RasterizeGLContext()
else:
self.glctx = dr.RasterizeCudaContext()
# extract trainable parameters
self.v_offsets = nn.Parameter(torch.zeros_like(self.mesh.v))
self.raw_albedo = nn.Parameter(trunc_rev_sigmoid(self.mesh.albedo))
def get_params(self):
params = [
{'params': self.raw_albedo, 'lr': self.opt.texture_lr},
]
if self.opt.train_geo:
params.append({'params': self.v_offsets, 'lr': self.opt.geom_lr})
return params
@torch.no_grad()
def export_mesh(self, save_path):
self.mesh.v = (self.mesh.v + self.v_offsets).detach()
self.mesh.albedo = torch.sigmoid(self.raw_albedo.detach())
self.mesh.write(save_path)
def render(self, pose, proj, h0, w0, ssaa=1, bg_color=1, texture_filter='linear-mipmap-linear'):
# do super-sampling
if ssaa != 1:
h = make_divisible(h0 * ssaa, 8)
w = make_divisible(w0 * ssaa, 8)
else:
h, w = h0, w0
results = {}
# get v
if self.opt.train_geo:
v = self.mesh.v + self.v_offsets # [N, 3]
else:
v = self.mesh.v
pose = torch.from_numpy(pose.astype(np.float32)).to(v.device)
proj = torch.from_numpy(proj.astype(np.float32)).to(v.device)
# get v_clip and render rgb
v_cam = torch.matmul(F.pad(v, pad=(0, 1), mode='constant', value=1.0), torch.inverse(pose).T).float().unsqueeze(0)
v_clip = v_cam @ proj.T
rast, rast_db = dr.rasterize(self.glctx, v_clip, self.mesh.f, (h, w))
alpha = (rast[0, ..., 3:] > 0).float()
depth, _ = dr.interpolate(-v_cam[..., [2]], rast, self.mesh.f) # [1, H, W, 1]
depth = depth.squeeze(0) # [H, W, 1]
texc, texc_db = dr.interpolate(self.mesh.vt.unsqueeze(0).contiguous(), rast, self.mesh.ft, rast_db=rast_db, diff_attrs='all')
albedo = dr.texture(self.raw_albedo.unsqueeze(0), texc, uv_da=texc_db, filter_mode=texture_filter) # [1, H, W, 3]
albedo = torch.sigmoid(albedo)
# get vn and render normal
if self.opt.train_geo:
i0, i1, i2 = self.mesh.f[:, 0].long(), self.mesh.f[:, 1].long(), self.mesh.f[:, 2].long()
v0, v1, v2 = v[i0, :], v[i1, :], v[i2, :]
face_normals = torch.cross(v1 - v0, v2 - v0)
face_normals = safe_normalize(face_normals)
vn = torch.zeros_like(v)
vn.scatter_add_(0, i0[:, None].repeat(1,3), face_normals)
vn.scatter_add_(0, i1[:, None].repeat(1,3), face_normals)
vn.scatter_add_(0, i2[:, None].repeat(1,3), face_normals)
vn = torch.where(torch.sum(vn * vn, -1, keepdim=True) > 1e-20, vn, torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device=vn.device))
else:
vn = self.mesh.vn
normal, _ = dr.interpolate(vn.unsqueeze(0).contiguous(), rast, self.mesh.fn)
normal = safe_normalize(normal[0])
# rotated normal (where [0, 0, 1] always faces camera)
rot_normal = normal @ pose[:3, :3]
viewcos = rot_normal[..., [2]]
# antialias
albedo = dr.antialias(albedo, rast, v_clip, self.mesh.f).squeeze(0) # [H, W, 3]
albedo = alpha * albedo + (1 - alpha) * bg_color
# ssaa
if ssaa != 1:
albedo = scale_img_hwc(albedo, (h0, w0))
alpha = scale_img_hwc(alpha, (h0, w0))
depth = scale_img_hwc(depth, (h0, w0))
normal = scale_img_hwc(normal, (h0, w0))
viewcos = scale_img_hwc(viewcos, (h0, w0))
results['image'] = albedo.clamp(0, 1)
results['alpha'] = alpha
results['depth'] = depth
results['normal'] = (normal + 1) / 2
results['viewcos'] = viewcos
return results |