# AUTOGENERATED! DO NOT EDIT! # %% auto 0 __all__ = ['learn', 'categories', 'audio', 'label', 'inf', 'extract_emotion', 'get_y', 'classify_audio'] from fastai.vision.all import * import gradio as gr import matplotlib.pyplot as plt import librosa import librosa.display from pathlib import Path import os def extract_emotion(file_name: str) -> str: """ Given the name of the file, return the label indicating the emotion associated with the audio. """ # Split the filename at each underscore parts = file_name.split('_') # Label is after second label_with_extension = parts[-1] # Remove the extension to get only the label label = label_with_extension[:-4] return label def get_y(filepath): return extract_emotion(str(filepath).split("/")[-1]) # Load Learner learn = load_learner("emotion_model.pkl") categories = learn.dls.vocab def classify_audio(audio_file): """ Takes the audio file and returns its prediction of emotions along with probabilities. """ # Load the audio file sample, sample_rate = librosa.load(audio_file, sr=None, duration=20) # Create spectogram S = librosa.feature.melspectrogram(y=sample, sr=sample_rate) S_DB = librosa.power_to_db(S, ref=np.max) # Prepare the figure for saving the spectrogram fig, ax = plt.subplots() fig.tight_layout(pad=0) # Create the spectogram image img = librosa.display.specshow(S_DB, sr=sample_rate, x_axis='time', y_axis='mel', ax=ax) # Turn off the axis for saving plt.axis('off') # Save the spectogram temporarily temp_img_path = Path("temp_spectogram.png") plt.savefig(temp_img_path) pred,idx, probs = learn.predict(temp_img_path) # Remove the temporary spectogram image os.remove(temp_img_path) return dict(zip(categories, map(float, probs))) audio = gr.Audio(type="filepath", label="Upload Audio <=20 seconds") label = gr.Label() # Gradio Interface inf = gr.Interface(fn=classify_audio, inputs=audio, outputs=label) inf.launch()