Spaces:
Runtime error
Runtime error
File size: 4,800 Bytes
f49524d 10904a2 f49524d 10904a2 f49524d 10904a2 f49524d 556b8df f49524d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import os
import datetime
import json
import base64
from PIL import Image
import gradio as gr
import hashlib
import requests
from utils import build_logger
import io
LOGDIR = "log"
logger = build_logger("otter", LOGDIR)
# no_change_btn = gr.Button.update()
# enable_btn = gr.Button.update(interactive=True)
# disable_btn = gr.Button.update(interactive=False)
def decode_image(encoded_image: str) -> Image:
decoded_bytes = base64.b64decode(encoded_image.encode("utf-8"))
buffer = io.BytesIO(decoded_bytes)
image = Image.open(buffer)
return image
def encode_image(image: Image.Image, format: str = "PNG") -> str:
with io.BytesIO() as buffer:
image.save(buffer, format=format)
encoded_image = base64.b64encode(buffer.getvalue()).decode("utf-8")
return encoded_image
def get_conv_log_filename():
t = datetime.datetime.now()
name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
return name
def get_conv_image_dir():
name = os.path.join(LOGDIR, "images")
os.makedirs(name, exist_ok=True)
return name
def get_image_name(image, image_dir=None):
buffer = io.BytesIO()
image.save(buffer, format="PNG")
image_bytes = buffer.getvalue()
md5 = hashlib.md5(image_bytes).hexdigest()
if image_dir is not None:
image_name = os.path.join(image_dir, md5 + ".png")
else:
image_name = md5 + ".png"
return image_name
def resize_image(image, max_size):
width, height = image.size
aspect_ratio = float(width) / float(height)
if width > height:
new_width = max_size
new_height = int(new_width / aspect_ratio)
else:
new_height = max_size
new_width = int(new_height * aspect_ratio)
resized_image = image.resize((new_width, new_height))
return resized_image
def http_bot(image_input, text_input, request: gr.Request):
logger.info(f"http_bot. ip: {request.client.host}")
print(f"Prompt request: {text_input}")
base64_image_str = encode_image(image_input)
payload = {
"content": [
{
"prompt": text_input,
"image": base64_image_str,
}
],
"token": "sk-OtterHD",
}
print(
"request: ",
{
"prompt": text_input,
"image": base64_image_str[:10],
},
)
url = "http://10.128.0.40:8890/app/otter"
headers = {"Content-Type": "application/json"}
response = requests.post(url, headers=headers, data=json.dumps(payload))
results = response.json()
print("response: ", {"result": results["result"]})
return results["result"]
title = """
# OTTER-HD: A High-Resolution Multi-modality Model
[[Otter Codebase]](https://github.com/Luodian/Otter) [[Paper]]() [[Checkpoints & Benchmarks]](https://huggingface.co/Otter-AI)
"""
css = """
#mkd {
height: 1000px;
overflow: auto;
border: 1px solid #ccc;
}
"""
if __name__ == "__main__":
with gr.Blocks(css=css) as demo:
gr.Markdown(title)
dialog_state = gr.State()
input_state = gr.State()
with gr.Tab("Ask a Question"):
with gr.Row(equal_height=True):
with gr.Column(scale=2):
image_input = gr.Image(label="Upload a High-Res Image", type="pil")
with gr.Column(scale=1):
vqa_output = gr.Textbox(label="Output")
text_input = gr.Textbox(label="Ask a Question")
vqa_btn = gr.Button("Send It")
gr.Examples(
[
[
"./assets/IMG_00095.png",
"How many camels are inside this image?",
],
[
"./assets/IMG_00095.png",
"How many people are inside this image?",
],
[
"./assets/IMG_00012.png",
"How many apples are there?",
],
# ["./assets/./IMG_00012.png", "How many apples are there? Count them row by row."],
[
"./assets/IMG_00080.png",
"What is this and where is it from?",
],
[
"./assets/IMG_00094.png",
"What's important on this website?",
],
],
inputs=[image_input, text_input],
outputs=[vqa_output],
fn=http_bot,
label="Click on any Examples below👇",
)
vqa_btn.click(fn=http_bot, inputs=[image_input, text_input], outputs=vqa_output)
demo.launch() |