File size: 15,449 Bytes
1393b01
796d506
0585716
 
796d506
26a1157
 
7295302
ad03828
796d506
64e99f5
796d506
 
c5377ed
7295302
211a715
796d506
26a1157
 
796d506
 
7295302
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50ef1f9
c5377ed
796d506
7295302
796d506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c262148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
796d506
 
922a193
796d506
1393b01
c5377ed
1393b01
 
 
796d506
c5377ed
0585716
 
796d506
0585716
 
c5377ed
 
 
 
 
 
 
796d506
1393b01
0585716
c5377ed
1393b01
 
 
 
 
 
c5377ed
1393b01
 
 
 
 
 
0585716
b323e3d
5888100
796d506
64e99f5
 
 
6188097
e4c8ce8
6188097
0585716
 
 
 
 
 
 
c5377ed
 
1393b01
0585716
 
 
 
 
 
 
211a715
8be82f3
26a1157
8be82f3
c5377ed
e7f2f83
796d506
205190d
0585716
 
b323e3d
 
0585716
 
 
 
 
 
b8352d5
73a53d1
796d506
c5377ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad03828
 
 
c5377ed
 
 
 
 
 
 
 
 
 
 
 
8153ea9
 
 
c5377ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b211c5
c5377ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64e99f5
 
 
 
 
 
 
 
ad03828
 
26a1157
 
c5377ed
26a1157
 
 
 
 
 
 
 
 
 
 
 
ad03828
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import os
import pathlib
import random
import string
import tempfile
import time
from concurrent.futures import ThreadPoolExecutor
from typing import Iterable, List

import gradio as gr
import huggingface_hub
import torch
import yaml
import bitsandbytes
from gradio_logsview.logsview import Log, LogsView, LogsViewRunner
from mergekit.config import MergeConfiguration

from clean_community_org import garbage_collect_empty_models

has_gpu = torch.cuda.is_available()

# Running directly from Python doesn't work well with Gradio+run_process because of:
# Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method
# Let's use the CLI instead.
#
# import mergekit.merge
# from mergekit.common import parse_kmb
# from mergekit.options import MergeOptions
#
# merge_options = (
#     MergeOptions(
#         copy_tokenizer=True,
#         cuda=True,
#         low_cpu_memory=True,
#         write_model_card=True,
#     )
#     if has_gpu
#     else MergeOptions(
#         allow_crimes=True,
#         out_shard_size=parse_kmb("1B"),
#         lazy_unpickle=True,
#         write_model_card=True,
#     )
# )

cli = "config.yaml merge --copy-tokenizer" + (
    " --cuda --low-cpu-memory --allow-crimes" if has_gpu else " --allow-crimes --lazy-unpickle"
)

MARKDOWN_DESCRIPTION = """
# mergekit-gui

The fastest way to perform a model merge πŸ”₯

Specify a YAML configuration file (see examples below) and a HF token and this app will perform the merge and upload the merged model to your user profile.
"""

MARKDOWN_ARTICLE = """
___

## Merge Configuration

[Mergekit](https://github.com/arcee-ai/mergekit) configurations are YAML documents specifying the operations to perform in order to produce your merged model.
Below are the primary elements of a configuration file:

- `merge_method`: Specifies the method to use for merging models. See [Merge Methods](https://github.com/arcee-ai/mergekit#merge-methods) for a list.
- `slices`: Defines slices of layers from different models to be used. This field is mutually exclusive with `models`.
- `models`: Defines entire models to be used for merging. This field is mutually exclusive with `slices`.
- `base_model`: Specifies the base model used in some merging methods.
- `parameters`: Holds various parameters such as weights and densities, which can also be specified at different levels of the configuration.
- `dtype`: Specifies the data type used for the merging operation.
- `tokenizer_source`: Determines how to construct a tokenizer for the merged model.

## Merge Methods

A quick overview of the currently supported merge methods:

| Method                                                                                       | `merge_method` value | Multi-Model | Uses base model |
| -------------------------------------------------------------------------------------------- | -------------------- | ----------- | --------------- |
| Linear ([Model Soups](https://arxiv.org/abs/2203.05482))                                     | `linear`             | βœ…          | ❌              |
| SLERP                                                                                        | `slerp`              | ❌          | βœ…              |
| [Task Arithmetic](https://arxiv.org/abs/2212.04089)                                          | `task_arithmetic`    | βœ…          | βœ…              |
| [TIES](https://arxiv.org/abs/2306.01708)                                                     | `ties`               | βœ…          | βœ…              |
| [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708)            | `dare_ties`          | βœ…          | βœ…              |
| [DARE](https://arxiv.org/abs/2311.03099) [Task Arithmetic](https://arxiv.org/abs/2212.04089) | `dare_linear`        | βœ…          | βœ…              |
| Passthrough                                                                                  | `passthrough`        | ❌          | ❌              |
| [Model Stock](https://arxiv.org/abs/2403.19522)                                              | `model_stock`        | βœ…          | βœ…              |


## Citation

This GUI is powered by [Arcee's MergeKit](https://arxiv.org/abs/2403.13257).
If you use it in your research, please cite the following paper:

```
@article{goddard2024arcee,
  title={Arcee's MergeKit: A Toolkit for Merging Large Language Models},
  author={Goddard, Charles and Siriwardhana, Shamane and Ehghaghi, Malikeh and Meyers, Luke and Karpukhin, Vlad and Benedict, Brian and McQuade, Mark and Solawetz, Jacob},
  journal={arXiv preprint arXiv:2403.13257},
  year={2024}
}
```

This Space is heavily inspired by LazyMergeKit by Maxime Labonne (see [Colab](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb)).
"""

examples = [[str(f)] for f in pathlib.Path("examples").glob("*.yaml")]

# Do not set community token as `HF_TOKEN` to avoid accidentally using it in merge scripts.
# `COMMUNITY_HF_TOKEN` is used to upload models to the community organization (https://huggingface.co/djuna-test-lab)
# when user do not provide a token.
COMMUNITY_HF_TOKEN = os.getenv("COMMUNITY_HF_TOKEN")


def merge(program: str, yaml_config: str, out_shard_size: str, hf_token: str, repo_name: str) -> Iterable[List[Log]]:
    runner = LogsViewRunner()

    if not yaml_config:
        yield runner.log("Empty yaml, pick an example below", level="ERROR")
        return
    # TODO: validate moe config and mega config?
    if program not in ("mergekit-moe", "mergekit-mega"):
        try:
            merge_config = MergeConfiguration.model_validate(yaml.safe_load(yaml_config))
        except Exception as e:
            yield runner.log(f"Invalid yaml {e}", level="ERROR")
            return

    is_community_model = False
    if not hf_token:
        if "/" in repo_name and not repo_name.startswith("djuna-test-lab/"):
            yield runner.log(
                f"Cannot upload merge model to namespace {repo_name.split('/')[0]}: you must provide a valid token.",
                level="ERROR",
            )
            return
        yield runner.log(
            "No HF token provided. Your merged model will be uploaded to the https://huggingface.co/djuna-test-lab organization."
        )
        is_community_model = True
        if not COMMUNITY_HF_TOKEN:
            raise gr.Error("Cannot upload to community org: community token not set by Space owner.")
        hf_token = COMMUNITY_HF_TOKEN

    api = huggingface_hub.HfApi(token=hf_token)

    with tempfile.TemporaryDirectory(ignore_cleanup_errors=True) as tmpdirname:
        tmpdir = pathlib.Path(tmpdirname)
        merged_path = tmpdir / "merged"
        merged_path.mkdir(parents=True, exist_ok=True)
        config_path = merged_path / "config.yaml"
        config_path.write_text(yaml_config)
        yield runner.log(f"Merge configuration saved in {config_path}")

        if not repo_name:
            yield runner.log("No repo name provided. Generating a random one.")
            repo_name = f"mergekit-{merge_config.merge_method}"
            # Make repo_name "unique" (no need to be extra careful on uniqueness)
            repo_name += "-" + "".join(random.choices(string.ascii_lowercase, k=7))
            repo_name = repo_name.replace("/", "-").strip("-")

        if is_community_model and not repo_name.startswith("djuna-test-lab/"):
            repo_name = f"djuna-test-lab/{repo_name}"

        try:
            yield runner.log(f"Creating repo {repo_name}")
            repo_url = api.create_repo(repo_name, exist_ok=True)
            yield runner.log(f"Repo created: {repo_url}")
        except Exception as e:
            yield runner.log(f"Error creating repo {e}", level="ERROR")
            return

        # Set tmp HF_HOME to avoid filling up disk Space
        tmp_env = os.environ.copy()  # taken from https://stackoverflow.com/a/4453495
        tmp_env["HF_HOME"] = f"{tmpdirname}/.cache"
        full_cli = f"{program} {cli} --lora-merge-cache {tmpdirname}/.lora_cache --out-shard-size {out_shard_size}"
        yield from runner.run_command(full_cli.split(), cwd=merged_path, env=tmp_env)

        if runner.exit_code != 0:
            yield runner.log("Merge failed. Deleting repo as no model is uploaded.", level="ERROR")
            api.delete_repo(repo_url.repo_id)
            return

        yield runner.log("Model merged successfully. Uploading to HF.")
        yield from runner.run_python(
            api.upload_folder,
            repo_id=repo_url.repo_id,
            folder_path=merged_path / "merge",
        )
        yield runner.log(f"Model successfully uploaded to HF: {repo_url.repo_id}")


def extract(finetuned_model: str, base_model: str, rank: int, hf_token: str, repo_name: str) -> Iterable[List[Log]]:
    runner = LogsViewRunner()
    if not finetuned_model or not base_model:
        yield runner.log("All field should be filled")

    is_community_model = False
    if not hf_token:
        if "/" in repo_name and not repo_name.startswith("djuna-test-lab/"):
            yield runner.log(
                f"Cannot upload merge model to namespace {repo_name.split('/')[0]}: you must provide a valid token.",
                level="ERROR",
            )
            return
        yield runner.log(
            "No HF token provided. Your lora will be uploaded to the https://huggingface.co/djuna-test-lab organization."
        )
        is_community_model = True
        if not COMMUNITY_HF_TOKEN:
            raise gr.Error("Cannot upload to community org: community token not set by Space owner.")
        hf_token = COMMUNITY_HF_TOKEN

    api = huggingface_hub.HfApi(token=hf_token)

    with tempfile.TemporaryDirectory(ignore_cleanup_errors=True) as tmpdirname:
        tmpdir = pathlib.Path(tmpdirname)
        merged_path = tmpdir / "merged"
        merged_path.mkdir(parents=True, exist_ok=True)

        if not repo_name:
            yield runner.log("No repo name provided. Generating a random one.")
            repo_name = "lora"
            # Make repo_name "unique" (no need to be extra careful on uniqueness)
            repo_name += "-" + "".join(random.choices(string.ascii_lowercase, k=7))
            repo_name = repo_name.replace("/", "-").strip("-")

        if is_community_model and not repo_name.startswith("djuna-test-lab/"):
            repo_name = f"djuna-test-lab/{repo_name}"

        try:
            yield runner.log(f"Creating repo {repo_name}")
            repo_url = api.create_repo(repo_name, exist_ok=True)
            yield runner.log(f"Repo created: {repo_url}")
        except Exception as e:
            yield runner.log(f"Error creating repo {e}", level="ERROR")
            return

        # Set tmp HF_HOME to avoid filling up disk Space
        tmp_env = os.environ.copy()  # taken from https://stackoverflow.com/a/4453495
        tmp_env["HF_HOME"] = f"{tmpdirname}/.cache"
        full_cli = f"mergekit-extract-lora {finetuned_model} {base_model} lora --rank={rank}"
        yield from runner.run_command(full_cli.split(), cwd=merged_path, env=tmp_env)

        if runner.exit_code != 0:
            yield runner.log("Lora extraction failed. Deleting repo as no lora is uploaded.", level="ERROR")
            api.delete_repo(repo_url.repo_id)
            return

        yield runner.log("Lora extracted successfully. Uploading to HF.")
        yield from runner.run_python(
            api.upload_folder,
            repo_id=repo_url.repo_id,
            folder_path=merged_path / "lora",
        )
        yield runner.log(f"Lora successfully uploaded to HF: {repo_url.repo_id}")


with gr.Blocks() as demo:
    gr.Markdown(MARKDOWN_DESCRIPTION)

    with gr.Tabs():
        with gr.TabItem("Merge Model"):
            with gr.Row():
                filename = gr.Textbox(visible=False, label="filename")
                config = gr.Code(language="yaml", lines=10, label="config.yaml")
                with gr.Column():
                    program = gr.Dropdown(
                        ["mergekit-yaml", "mergekit-mega", "mergekit-moe"],
                        label="Mergekit Command",
                        info="Choose CLI",
                    )
                    out_shard_size = gr.Dropdown(
                        ["500M", "1B", "2B", "3B", "4B", "5B"],
                        label="Output Shard Size",
                        value="500M",
                    )
                    token = gr.Textbox(
                        lines=1,
                        label="HF Write Token",
                        info="https://hf.co/settings/token",
                        type="password",
                        placeholder="Optional. Will upload merged model to MergeKit Community if empty.",
                    )
                    repo_name = gr.Textbox(
                        lines=1,
                        label="Repo name",
                        placeholder="Optional. Will create a random name if empty.",
                    )
            button = gr.Button("Merge", variant="primary")
            logs = LogsView(label="Terminal output")
            button.click(fn=merge, inputs=[program, config, out_shard_size, token, repo_name], outputs=[logs])

        with gr.TabItem("LORA Extraction"):
            with gr.Row():
                with gr.Column():
                    finetuned_model = gr.Textbox(
                        lines=1,
                        label="Finetuned Model",
                    )
                    base_model = gr.Textbox(
                        lines=1,
                        label="Base Model",
                    )
                    rank = gr.Dropdown(
                        [32, 64, 128],
                        label="Rank level",
                        value=32,
                    )
                with gr.Column():
                    token = gr.Textbox(
                        lines=1,
                        label="HF Write Token",
                        info="https://hf.co/settings/token",
                        type="password",
                        placeholder="Optional. Will upload merged model to MergeKit Community if empty.",
                    )
                    repo_name = gr.Textbox(
                        lines=1,
                        label="Repo name",
                        placeholder="Optional. Will create a random name if empty.",
                    )
                    button = gr.Button("Extract LORA", variant="primary")
            logs = LogsView(label="Terminal output")
            button.click(fn=extract, inputs=[finetuned_model, base_model, rank, token, repo_name], outputs=[logs])
    gr.Examples(
        examples,
        fn=lambda s: (s,),
        run_on_click=True,
        label="Examples",
        inputs=[filename],
        outputs=[config],
    )
    gr.Markdown(MARKDOWN_ARTICLE)


# Run garbage collection every hour to keep the community org clean.
# Empty models might exist if the merge fails abruptly (e.g. if user leaves the Space).
def _garbage_collect_every_hour():
    while True:
        try:
            garbage_collect_empty_models(token=COMMUNITY_HF_TOKEN)
        except Exception as e:
            print("Error running garbage collection", e)
        time.sleep(3600)


pool = ThreadPoolExecutor()
pool.submit(_garbage_collect_every_hour)

demo.queue(default_concurrency_limit=1).launch()