Spaces:
Paused
Paused
Update main.py
Browse files
main.py
CHANGED
@@ -1,16 +1,94 @@
|
|
1 |
from fastapi import FastAPI
|
2 |
import pickle
|
3 |
import uvicorn
|
4 |
-
import pandas as pd
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
@app.get("/")
|
10 |
def root():
|
11 |
return {"API": "An API for Sepsis Prediction."}
|
12 |
|
13 |
|
14 |
-
@app.
|
15 |
-
async def predict():
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI
|
2 |
import pickle
|
3 |
import uvicorn
|
|
|
4 |
|
5 |
+
import logging
|
6 |
+
import os
|
7 |
+
import shutil
|
8 |
+
import subprocess
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from flask import Flask, jsonify, request, render_template
|
12 |
+
from langchain.chains import RetrievalQA
|
13 |
+
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
14 |
+
|
15 |
+
# from langchain.embeddings import HuggingFaceEmbeddings
|
16 |
+
from run_localGPT import load_model
|
17 |
+
from prompt_template_utils import get_prompt_template
|
18 |
+
|
19 |
+
# from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
20 |
+
from langchain.vectorstores import Chroma
|
21 |
+
from werkzeug.utils import secure_filename
|
22 |
+
|
23 |
+
from constants import CHROMA_SETTINGS, EMBEDDING_MODEL_NAME, PERSIST_DIRECTORY, MODEL_ID, MODEL_BASENAME
|
24 |
+
|
25 |
+
if torch.backends.mps.is_available():
|
26 |
+
DEVICE_TYPE = "mps"
|
27 |
+
elif torch.cuda.is_available():
|
28 |
+
DEVICE_TYPE = "cuda"
|
29 |
+
else:
|
30 |
+
DEVICE_TYPE = "cpu"
|
31 |
+
|
32 |
+
SHOW_SOURCES = True
|
33 |
+
logging.info(f"Running on: {DEVICE_TYPE}")
|
34 |
+
logging.info(f"Display Source Documents set to: {SHOW_SOURCES}")
|
35 |
+
|
36 |
+
EMBEDDINGS = HuggingFaceInstructEmbeddings(model_name=EMBEDDING_MODEL_NAME, model_kwargs={"device": DEVICE_TYPE})
|
37 |
+
|
38 |
+
# load the vectorstore
|
39 |
+
DB = Chroma(
|
40 |
+
persist_directory=PERSIST_DIRECTORY,
|
41 |
+
embedding_function=EMBEDDINGS,
|
42 |
+
client_settings=CHROMA_SETTINGS,
|
43 |
+
)
|
44 |
|
45 |
+
RETRIEVER = DB.as_retriever()
|
46 |
+
|
47 |
+
LLM = load_model(device_type=DEVICE_TYPE, model_id=MODEL_ID, model_basename=MODEL_BASENAME)
|
48 |
+
prompt, memory = get_prompt_template(promptTemplate_type="llama", history=False)
|
49 |
+
|
50 |
+
QA = RetrievalQA.from_chain_type(
|
51 |
+
llm=LLM,
|
52 |
+
chain_type="stuff",
|
53 |
+
retriever=RETRIEVER,
|
54 |
+
return_source_documents=SHOW_SOURCES,
|
55 |
+
chain_type_kwargs={
|
56 |
+
"prompt": prompt,
|
57 |
+
},
|
58 |
+
)
|
59 |
+
|
60 |
+
class Predict(BaseModel):
|
61 |
+
prompt: str
|
62 |
+
|
63 |
+
|
64 |
+
app = FastAPI()
|
65 |
|
66 |
@app.get("/")
|
67 |
def root():
|
68 |
return {"API": "An API for Sepsis Prediction."}
|
69 |
|
70 |
|
71 |
+
@app.post('/predict')
|
72 |
+
async def predict(data: Predict):
|
73 |
+
global QA
|
74 |
+
user_prompt = data.prompt
|
75 |
+
if user_prompt:
|
76 |
+
# print(f'User Prompt: {user_prompt}')
|
77 |
+
# Get the answer from the chain
|
78 |
+
res = QA(user_prompt)
|
79 |
+
answer, docs = res["result"], res["source_documents"]
|
80 |
+
|
81 |
+
prompt_response_dict = {
|
82 |
+
"Prompt": user_prompt,
|
83 |
+
"Answer": answer,
|
84 |
+
}
|
85 |
+
|
86 |
+
prompt_response_dict["Sources"] = []
|
87 |
+
for document in docs:
|
88 |
+
prompt_response_dict["Sources"].append(
|
89 |
+
(os.path.basename(str(document.metadata["source"])), str(document.page_content))
|
90 |
+
)
|
91 |
+
|
92 |
+
return jsonify(prompt_response_dict), 200
|
93 |
+
else:
|
94 |
+
return "No user prompt received", 400
|