Spaces:
Paused
Paused
Daniel Marques
commited on
Commit
·
0d6b303
1
Parent(s):
61d38da
feat: add ministral model
Browse files- constants.py +2 -2
- redis-implements/main.py +0 -258
- websocket/socketManager.py +0 -7
constants.py
CHANGED
@@ -32,8 +32,8 @@ CHROMA_SETTINGS = Settings(
|
|
32 |
)
|
33 |
|
34 |
# Context Window and Max New Tokens
|
35 |
-
CONTEXT_WINDOW_SIZE =
|
36 |
-
MAX_NEW_TOKENS =
|
37 |
|
38 |
#### If you get a "not enough space in the buffer" error, you should reduce the values below, start with half of the original values and keep halving the value until the error stops appearing
|
39 |
|
|
|
32 |
)
|
33 |
|
34 |
# Context Window and Max New Tokens
|
35 |
+
CONTEXT_WINDOW_SIZE = 4096
|
36 |
+
MAX_NEW_TOKENS = 1024 # int(CONTEXT_WINDOW_SIZE/4)
|
37 |
|
38 |
#### If you get a "not enough space in the buffer" error, you should reduce the values below, start with half of the original values and keep halving the value until the error stops appearing
|
39 |
|
redis-implements/main.py
DELETED
@@ -1,258 +0,0 @@
|
|
1 |
-
from typing import Any, Dict, List, Union
|
2 |
-
|
3 |
-
import os
|
4 |
-
import glob
|
5 |
-
import shutil
|
6 |
-
import subprocess
|
7 |
-
import redis
|
8 |
-
import torch
|
9 |
-
import concurrent.futures
|
10 |
-
import json
|
11 |
-
|
12 |
-
from fastapi import FastAPI, HTTPException, UploadFile, WebSocket, WebSocketDisconnect
|
13 |
-
from fastapi.staticfiles import StaticFiles
|
14 |
-
|
15 |
-
from pydantic import BaseModel
|
16 |
-
|
17 |
-
# langchain
|
18 |
-
from langchain.chains import RetrievalQA
|
19 |
-
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
20 |
-
from langchain.callbacks.base import BaseCallbackHandler
|
21 |
-
from langchain.schema import LLMResult
|
22 |
-
from langchain.vectorstores import Chroma
|
23 |
-
|
24 |
-
from prompt_template_utils import get_prompt_template
|
25 |
-
from load_models import load_model
|
26 |
-
|
27 |
-
from constants import CHROMA_SETTINGS, EMBEDDING_MODEL_NAME, PERSIST_DIRECTORY, MODEL_ID, MODEL_BASENAME, PATH_NAME_SOURCE_DIRECTORY, SHOW_SOURCES
|
28 |
-
|
29 |
-
class Predict(BaseModel):
|
30 |
-
prompt: str
|
31 |
-
|
32 |
-
class Delete(BaseModel):
|
33 |
-
filename: str
|
34 |
-
|
35 |
-
if torch.backends.mps.is_available():
|
36 |
-
DEVICE_TYPE = "mps"
|
37 |
-
elif torch.cuda.is_available():
|
38 |
-
DEVICE_TYPE = "cuda"
|
39 |
-
else:
|
40 |
-
DEVICE_TYPE = "cpu"
|
41 |
-
|
42 |
-
EMBEDDINGS = HuggingFaceInstructEmbeddings(model_name=EMBEDDING_MODEL_NAME, model_kwargs={"device": DEVICE_TYPE})
|
43 |
-
DB = Chroma(persist_directory=PERSIST_DIRECTORY, embedding_function=EMBEDDINGS, client_settings=CHROMA_SETTINGS)
|
44 |
-
RETRIEVER = DB.as_retriever()
|
45 |
-
|
46 |
-
redisClient = redis.Redis(host='localhost', port=6379, db=0)
|
47 |
-
|
48 |
-
class MyCustomSyncHandler(BaseCallbackHandler):
|
49 |
-
def __init__(self, redisClient):
|
50 |
-
self.message = ''
|
51 |
-
self.redisClient = redisClient
|
52 |
-
|
53 |
-
def on_llm_new_token(self, token: str, **kwargs) -> Any:
|
54 |
-
self.message += token
|
55 |
-
self.redisClient.publish(f'{kwargs["tags"][0]}', self.message)
|
56 |
-
|
57 |
-
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> Any:
|
58 |
-
print("on_llm_end end")
|
59 |
-
self.redisClient.publish(f'{kwargs["tags"][0]}', 'end')
|
60 |
-
|
61 |
-
def on_llm_error(
|
62 |
-
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
|
63 |
-
) -> Any:
|
64 |
-
print("on_llm_error end")
|
65 |
-
self.redisClient.publish(f'{kwargs["tags"][0]}', 'end')
|
66 |
-
|
67 |
-
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> Any:
|
68 |
-
print("on_chain_end end")
|
69 |
-
self.redisClient.publish(f'{kwargs["tags"][0]}', 'end')
|
70 |
-
|
71 |
-
handleCallback = MyCustomSyncHandler(redisClient)
|
72 |
-
|
73 |
-
LLM = load_model(device_type=DEVICE_TYPE, model_id=MODEL_ID, model_basename=MODEL_BASENAME, stream=True, callbacks=[handleCallback])
|
74 |
-
|
75 |
-
prompt, memory = get_prompt_template(promptTemplate_type="llama", history=True)
|
76 |
-
|
77 |
-
QA = RetrievalQA.from_chain_type(
|
78 |
-
llm=LLM,
|
79 |
-
chain_type="stuff",
|
80 |
-
retriever=RETRIEVER,
|
81 |
-
return_source_documents=SHOW_SOURCES,
|
82 |
-
chain_type_kwargs={
|
83 |
-
"prompt": prompt,
|
84 |
-
"memory": memory
|
85 |
-
},
|
86 |
-
)
|
87 |
-
|
88 |
-
app = FastAPI(title="homepage-app")
|
89 |
-
api_app = FastAPI(title="api app")
|
90 |
-
|
91 |
-
app.mount("/api", api_app, name="api")
|
92 |
-
app.mount("/", StaticFiles(directory="static",html = True), name="static")
|
93 |
-
|
94 |
-
@api_app.get("/training")
|
95 |
-
def run_ingest_route():
|
96 |
-
global DB
|
97 |
-
global RETRIEVER
|
98 |
-
global QA
|
99 |
-
|
100 |
-
try:
|
101 |
-
if os.path.exists(PERSIST_DIRECTORY):
|
102 |
-
try:
|
103 |
-
shutil.rmtree(PERSIST_DIRECTORY)
|
104 |
-
except OSError as e:
|
105 |
-
raise HTTPException(status_code=500, detail=f"Error: {e.filename} - {e.strerror}.")
|
106 |
-
else:
|
107 |
-
raise HTTPException(status_code=500, detail="The directory does not exist")
|
108 |
-
|
109 |
-
run_langest_commands = ["python", "ingest.py"]
|
110 |
-
|
111 |
-
if DEVICE_TYPE == "cpu":
|
112 |
-
run_langest_commands.append("--device_type")
|
113 |
-
run_langest_commands.append(DEVICE_TYPE)
|
114 |
-
|
115 |
-
result = subprocess.run(run_langest_commands, capture_output=True)
|
116 |
-
|
117 |
-
if result.returncode != 0:
|
118 |
-
raise HTTPException(status_code=400, detail="Script execution failed: {}")
|
119 |
-
|
120 |
-
# load the vectorstore
|
121 |
-
DB = Chroma(
|
122 |
-
persist_directory=PERSIST_DIRECTORY,
|
123 |
-
embedding_function=EMBEDDINGS,
|
124 |
-
client_settings=CHROMA_SETTINGS,
|
125 |
-
)
|
126 |
-
|
127 |
-
RETRIEVER = DB.as_retriever()
|
128 |
-
|
129 |
-
QA = RetrievalQA.from_chain_type(
|
130 |
-
llm=LLM,
|
131 |
-
chain_type="stuff",
|
132 |
-
retriever=RETRIEVER,
|
133 |
-
return_source_documents=SHOW_SOURCES,
|
134 |
-
chain_type_kwargs={
|
135 |
-
"prompt": prompt,
|
136 |
-
"memory": memory
|
137 |
-
},
|
138 |
-
)
|
139 |
-
|
140 |
-
return {"response": "The training was successfully completed"}
|
141 |
-
except Exception as e:
|
142 |
-
raise HTTPException(status_code=500, detail=f"Error occurred: {str(e)}")
|
143 |
-
|
144 |
-
@api_app.get("/api/files")
|
145 |
-
def get_files():
|
146 |
-
upload_dir = os.path.join(os.getcwd(), PATH_NAME_SOURCE_DIRECTORY)
|
147 |
-
files = glob.glob(os.path.join(upload_dir, '*'))
|
148 |
-
|
149 |
-
return {"directory": upload_dir, "files": files}
|
150 |
-
|
151 |
-
@api_app.delete("/api/delete_document")
|
152 |
-
def delete_source_route(data: Delete):
|
153 |
-
filename = data.filename
|
154 |
-
path_source_documents = os.path.join(os.getcwd(), PATH_NAME_SOURCE_DIRECTORY)
|
155 |
-
file_to_delete = f"{path_source_documents}/{filename}"
|
156 |
-
|
157 |
-
if os.path.exists(file_to_delete):
|
158 |
-
try:
|
159 |
-
os.remove(file_to_delete)
|
160 |
-
print(f"{file_to_delete} has been deleted.")
|
161 |
-
|
162 |
-
return {"message": f"{file_to_delete} has been deleted."}
|
163 |
-
except OSError as e:
|
164 |
-
raise HTTPException(status_code=400, detail=print(f"error: {e}."))
|
165 |
-
else:
|
166 |
-
raise HTTPException(status_code=400, detail=print(f"The file {file_to_delete} does not exist."))
|
167 |
-
|
168 |
-
@api_app.post('/predict')
|
169 |
-
async def predict(data: Predict):
|
170 |
-
global QA
|
171 |
-
user_prompt = data.prompt
|
172 |
-
if user_prompt:
|
173 |
-
res = QA(user_prompt)
|
174 |
-
|
175 |
-
answer, docs = res["result"], res["source_documents"]
|
176 |
-
|
177 |
-
prompt_response_dict = {
|
178 |
-
"Prompt": user_prompt,
|
179 |
-
"Answer": answer,
|
180 |
-
}
|
181 |
-
|
182 |
-
prompt_response_dict["Sources"] = []
|
183 |
-
for document in docs:
|
184 |
-
prompt_response_dict["Sources"].append(
|
185 |
-
(os.path.basename(str(document.metadata["source"])), str(document.page_content))
|
186 |
-
)
|
187 |
-
|
188 |
-
return {"response": prompt_response_dict}
|
189 |
-
else:
|
190 |
-
raise HTTPException(status_code=400, detail="Prompt Incorrect")
|
191 |
-
|
192 |
-
@api_app.post("/save_document/")
|
193 |
-
async def create_upload_file(file: UploadFile):
|
194 |
-
# Get the file size (in bytes)
|
195 |
-
file.file.seek(0, 2)
|
196 |
-
file_size = file.file.tell()
|
197 |
-
|
198 |
-
# move the cursor back to the beginning
|
199 |
-
await file.seek(0)
|
200 |
-
|
201 |
-
if file_size > 10 * 1024 * 1024:
|
202 |
-
# more than 10 MB
|
203 |
-
raise HTTPException(status_code=400, detail="File too large")
|
204 |
-
|
205 |
-
content_type = file.content_type
|
206 |
-
|
207 |
-
if content_type not in [
|
208 |
-
"text/plain",
|
209 |
-
"text/markdown",
|
210 |
-
"text/x-markdown",
|
211 |
-
"text/csv",
|
212 |
-
"application/msword",
|
213 |
-
"application/pdf",
|
214 |
-
"application/vnd.ms-excel",
|
215 |
-
"application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
216 |
-
"application/vnd.openxmlformats-officedocument.wordprocessingml.document",
|
217 |
-
"text/x-python",
|
218 |
-
"application/x-python-code"]:
|
219 |
-
raise HTTPException(status_code=400, detail="Invalid file type")
|
220 |
-
|
221 |
-
upload_dir = os.path.join(os.getcwd(), PATH_NAME_SOURCE_DIRECTORY)
|
222 |
-
if not os.path.exists(upload_dir):
|
223 |
-
os.makedirs(upload_dir)
|
224 |
-
|
225 |
-
dest = os.path.join(upload_dir, file.filename)
|
226 |
-
|
227 |
-
with open(dest, "wb") as buffer:
|
228 |
-
shutil.copyfileobj(file.file, buffer)
|
229 |
-
|
230 |
-
return {"filename": file.filename}
|
231 |
-
|
232 |
-
@api_app.websocket("/ws/{client_id}")
|
233 |
-
async def websocket_endpoint(websocket: WebSocket, client_id: int):
|
234 |
-
global QA
|
235 |
-
|
236 |
-
await websocket.accept()
|
237 |
-
|
238 |
-
try:
|
239 |
-
while True:
|
240 |
-
prompt = await websocket.receive_text()
|
241 |
-
pubsub = redisClient.pubsub()
|
242 |
-
pubsub.subscribe(f'{client_id}')
|
243 |
-
|
244 |
-
with concurrent.futures.ThreadPoolExecutor() as executor:
|
245 |
-
executor.submit(QA(inputs=prompt, return_only_outputs=True, tags=f'{client_id}', include_run_info=True, callbacks=[handleCallback]))
|
246 |
-
|
247 |
-
for item in pubsub.listen():
|
248 |
-
if item["type"] == "message":
|
249 |
-
message = item["data"].decode('utf-8')
|
250 |
-
if message == "end": pubsub.unsubscribe({client_id})
|
251 |
-
await websocket.send_text(f'{message}')
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
except WebSocketDisconnect:
|
256 |
-
print('disconnect')
|
257 |
-
except RuntimeError as error:
|
258 |
-
print(error)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
websocket/socketManager.py
CHANGED
@@ -146,10 +146,3 @@ class WebSocketManager:
|
|
146 |
data = message['data'].decode('utf-8')
|
147 |
await socket.send_text(data)
|
148 |
|
149 |
-
async def get_instance_qa(self, room_id: str, QA: Any):
|
150 |
-
if room_id in self.qa:
|
151 |
-
return self.qa[room_id]
|
152 |
-
|
153 |
-
self.qa[room_id] = QA
|
154 |
-
return self.qa[room_id]
|
155 |
-
|
|
|
146 |
data = message['data'].decode('utf-8')
|
147 |
await socket.send_text(data)
|
148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|