Spaces:
Paused
Paused
Daniel Marques
commited on
Commit
·
c18ec7e
1
Parent(s):
198843f
fix: add streamer
Browse files- load_models.py +8 -32
- main.py +40 -18
load_models.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import torch
|
2 |
-
|
3 |
import logging
|
4 |
from typing import Any, Dict, List
|
5 |
|
@@ -7,9 +7,6 @@ from auto_gptq import AutoGPTQForCausalLM
|
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
from langchain.llms import LlamaCpp, HuggingFacePipeline
|
9 |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
10 |
-
from langchain.schema import LLMResult
|
11 |
-
|
12 |
-
from langchain.callbacks.base import AsyncCallbackHandler, BaseCallbackHandler
|
13 |
|
14 |
from transformers import (
|
15 |
AutoModelForCausalLM,
|
@@ -28,30 +25,7 @@ torch.set_grad_enabled(False)
|
|
28 |
from constants import CONTEXT_WINDOW_SIZE, MAX_NEW_TOKENS, N_GPU_LAYERS, N_BATCH, MODELS_PATH
|
29 |
|
30 |
|
31 |
-
|
32 |
-
def on_llm_new_token(self, token: str, **kwargs) -> None:
|
33 |
-
print(f"Sync handler being called in a `thread_pool_executor`: token: {token}")
|
34 |
-
|
35 |
-
class MyCustomAsyncHandler(AsyncCallbackHandler):
|
36 |
-
"""Async callback handler that can be used to handle callbacks from langchain."""
|
37 |
-
|
38 |
-
async def on_llm_start(
|
39 |
-
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
|
40 |
-
) -> None:
|
41 |
-
"""Run when chain starts running."""
|
42 |
-
print("zzzz....")
|
43 |
-
await asyncio.sleep(0.3)
|
44 |
-
class_name = serialized["name"]
|
45 |
-
print("Hi! I just woke up. Your llm is starting")
|
46 |
-
|
47 |
-
async def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
|
48 |
-
"""Run when chain ends running."""
|
49 |
-
print("zzzz....")
|
50 |
-
await asyncio.sleep(0.3)
|
51 |
-
print("Hi! I just woke up. Your llm is ending")
|
52 |
-
|
53 |
-
|
54 |
-
def load_quantized_model_gguf_ggml(model_id, model_basename, device_type, logging, stream = False):
|
55 |
"""
|
56 |
Load a GGUF/GGML quantized model using LlamaCpp.
|
57 |
|
@@ -93,9 +67,10 @@ def load_quantized_model_gguf_ggml(model_id, model_basename, device_type, loggin
|
|
93 |
if device_type.lower() == "cuda":
|
94 |
kwargs["n_gpu_layers"] = N_GPU_LAYERS # set this based on your GPU
|
95 |
|
96 |
-
#add stream
|
97 |
kwargs["stream"] = stream
|
98 |
-
|
|
|
|
|
99 |
|
100 |
return LlamaCpp(**kwargs)
|
101 |
except:
|
@@ -145,6 +120,7 @@ def load_quantized_model_qptq(model_id, model_basename, device_type, logging):
|
|
145 |
use_triton=False,
|
146 |
quantize_config=None,
|
147 |
)
|
|
|
148 |
return model, tokenizer
|
149 |
|
150 |
|
@@ -195,7 +171,7 @@ def load_full_model(model_id, model_basename, device_type, logging):
|
|
195 |
return model, tokenizer
|
196 |
|
197 |
|
198 |
-
def load_model(device_type, model_id, model_basename=None, LOGGING=logging, stream=False):
|
199 |
"""
|
200 |
Select a model for text generation using the HuggingFace library.
|
201 |
If you are running this for the first time, it will download a model for you.
|
@@ -219,7 +195,7 @@ def load_model(device_type, model_id, model_basename=None, LOGGING=logging, stre
|
|
219 |
|
220 |
if model_basename is not None:
|
221 |
if ".gguf" in model_basename.lower():
|
222 |
-
llm = load_quantized_model_gguf_ggml(model_id, model_basename, device_type, LOGGING, stream)
|
223 |
return llm
|
224 |
elif ".ggml" in model_basename.lower():
|
225 |
model, tokenizer = load_quantized_model_gguf_ggml(model_id, model_basename, device_type, LOGGING)
|
|
|
1 |
import torch
|
2 |
+
|
3 |
import logging
|
4 |
from typing import Any, Dict, List
|
5 |
|
|
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
from langchain.llms import LlamaCpp, HuggingFacePipeline
|
9 |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
|
|
|
|
|
|
10 |
|
11 |
from transformers import (
|
12 |
AutoModelForCausalLM,
|
|
|
25 |
from constants import CONTEXT_WINDOW_SIZE, MAX_NEW_TOKENS, N_GPU_LAYERS, N_BATCH, MODELS_PATH
|
26 |
|
27 |
|
28 |
+
def load_quantized_model_gguf_ggml(model_id, model_basename, device_type, logging, stream = False, callbacks = []):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
"""
|
30 |
Load a GGUF/GGML quantized model using LlamaCpp.
|
31 |
|
|
|
67 |
if device_type.lower() == "cuda":
|
68 |
kwargs["n_gpu_layers"] = N_GPU_LAYERS # set this based on your GPU
|
69 |
|
|
|
70 |
kwargs["stream"] = stream
|
71 |
+
|
72 |
+
if stream == True:
|
73 |
+
kwargs["callbacks"] = callbacks
|
74 |
|
75 |
return LlamaCpp(**kwargs)
|
76 |
except:
|
|
|
120 |
use_triton=False,
|
121 |
quantize_config=None,
|
122 |
)
|
123 |
+
|
124 |
return model, tokenizer
|
125 |
|
126 |
|
|
|
171 |
return model, tokenizer
|
172 |
|
173 |
|
174 |
+
def load_model(device_type, model_id, model_basename=None, LOGGING=logging, stream=False, callbacks = []):
|
175 |
"""
|
176 |
Select a model for text generation using the HuggingFace library.
|
177 |
If you are running this for the first time, it will download a model for you.
|
|
|
195 |
|
196 |
if model_basename is not None:
|
197 |
if ".gguf" in model_basename.lower():
|
198 |
+
llm = load_quantized_model_gguf_ggml(model_id, model_basename, device_type, LOGGING, stream, callbacks)
|
199 |
return llm
|
200 |
elif ".ggml" in model_basename.lower():
|
201 |
model, tokenizer = load_quantized_model_gguf_ggml(model_id, model_basename, device_type, LOGGING)
|
main.py
CHANGED
@@ -1,17 +1,21 @@
|
|
1 |
-
from fastapi import FastAPI, HTTPException, UploadFile, WebSocket
|
2 |
-
from fastapi.staticfiles import StaticFiles
|
3 |
-
|
4 |
-
from pydantic import BaseModel
|
5 |
import os
|
6 |
import glob
|
7 |
import shutil
|
8 |
import subprocess
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# import torch
|
11 |
from langchain.chains import RetrievalQA
|
12 |
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
13 |
from langchain.prompts import PromptTemplate
|
14 |
from langchain.memory import ConversationBufferMemory
|
|
|
|
|
15 |
|
16 |
# from langchain.embeddings import HuggingFaceEmbeddings
|
17 |
from load_models import load_model
|
@@ -21,6 +25,26 @@ from langchain.vectorstores import Chroma
|
|
21 |
|
22 |
from constants import CHROMA_SETTINGS, EMBEDDING_MODEL_NAME, PERSIST_DIRECTORY, MODEL_ID, MODEL_BASENAME, PATH_NAME_SOURCE_DIRECTORY
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
# if torch.backends.mps.is_available():
|
25 |
# DEVICE_TYPE = "mps"
|
26 |
# elif torch.cuda.is_available():
|
@@ -42,15 +66,13 @@ DB = Chroma(
|
|
42 |
|
43 |
RETRIEVER = DB.as_retriever()
|
44 |
|
45 |
-
LLM = load_model(device_type=DEVICE_TYPE, model_id=MODEL_ID, model_basename=MODEL_BASENAME, stream=True)
|
46 |
|
47 |
-
template = """you are a helpful, respectful and honest assistant.
|
48 |
-
You should only
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
Use 15 sentences maximum. Keep the answer as concise as possible.
|
53 |
-
Always say "thanks for asking!" at the end of the answer.
|
54 |
Context: {history} \n {context}
|
55 |
Question: {question}
|
56 |
"""
|
@@ -70,12 +92,6 @@ QA = RetrievalQA.from_chain_type(
|
|
70 |
},
|
71 |
)
|
72 |
|
73 |
-
class Predict(BaseModel):
|
74 |
-
prompt: str
|
75 |
-
|
76 |
-
class Delete(BaseModel):
|
77 |
-
filename: str
|
78 |
-
|
79 |
app = FastAPI(title="homepage-app")
|
80 |
api_app = FastAPI(title="api app")
|
81 |
|
@@ -179,6 +195,12 @@ async def predict(data: Predict):
|
|
179 |
(os.path.basename(str(document.metadata["source"])), str(document.page_content))
|
180 |
)
|
181 |
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
# generated_text = ""
|
183 |
# for new_text in STREAMER:
|
184 |
# generated_text += new_text
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import glob
|
3 |
import shutil
|
4 |
import subprocess
|
5 |
+
import asyncio
|
6 |
+
|
7 |
+
from fastapi import FastAPI, HTTPException, UploadFile, WebSocket
|
8 |
+
from fastapi.staticfiles import StaticFiles
|
9 |
+
|
10 |
+
from pydantic import BaseModel
|
11 |
|
12 |
# import torch
|
13 |
from langchain.chains import RetrievalQA
|
14 |
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
15 |
from langchain.prompts import PromptTemplate
|
16 |
from langchain.memory import ConversationBufferMemory
|
17 |
+
from langchain.callbacks.base import AsyncCallbackHandler, BaseCallbackHandler
|
18 |
+
from langchain.schema import LLMResult
|
19 |
|
20 |
# from langchain.embeddings import HuggingFaceEmbeddings
|
21 |
from load_models import load_model
|
|
|
25 |
|
26 |
from constants import CHROMA_SETTINGS, EMBEDDING_MODEL_NAME, PERSIST_DIRECTORY, MODEL_ID, MODEL_BASENAME, PATH_NAME_SOURCE_DIRECTORY
|
27 |
|
28 |
+
class Predict(BaseModel):
|
29 |
+
prompt: str
|
30 |
+
|
31 |
+
class Delete(BaseModel):
|
32 |
+
filename: str
|
33 |
+
|
34 |
+
|
35 |
+
class MyCustomAsyncHandler(AsyncCallbackHandler):
|
36 |
+
def on_llm_new_token(self, token: str, **kwargs) -> None:
|
37 |
+
print(f" token: {token}")
|
38 |
+
|
39 |
+
async def on_llm_start(
|
40 |
+
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
|
41 |
+
) -> None:
|
42 |
+
class_name = serialized["name"]
|
43 |
+
print("start")
|
44 |
+
|
45 |
+
async def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
|
46 |
+
print("finish")
|
47 |
+
|
48 |
# if torch.backends.mps.is_available():
|
49 |
# DEVICE_TYPE = "mps"
|
50 |
# elif torch.cuda.is_available():
|
|
|
66 |
|
67 |
RETRIEVER = DB.as_retriever()
|
68 |
|
69 |
+
LLM = load_model(device_type=DEVICE_TYPE, model_id=MODEL_ID, model_basename=MODEL_BASENAME, stream=True, callbacks = [MyCustomAsyncHandler])
|
70 |
|
71 |
+
template = """you are a helpful, respectful and honest assistant. When answering questions, you should only use the documents provided.
|
72 |
+
You should only answer the topics that appear in these documents.
|
73 |
+
Always answer in the most helpful and reliable way possible, if you don't know the answer to a question, just say you don't know, don't try to make up an answer,
|
74 |
+
don't share false information. you should use no more than 15 sentences and all your answers should be as concise as possible.
|
75 |
+
Always say "Thank you for asking!" at the end of your answer.
|
|
|
|
|
76 |
Context: {history} \n {context}
|
77 |
Question: {question}
|
78 |
"""
|
|
|
92 |
},
|
93 |
)
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
app = FastAPI(title="homepage-app")
|
96 |
api_app = FastAPI(title="api app")
|
97 |
|
|
|
195 |
(os.path.basename(str(document.metadata["source"])), str(document.page_content))
|
196 |
)
|
197 |
|
198 |
+
qa_chain_response = res.stream(
|
199 |
+
{"query": user_prompt},
|
200 |
+
)
|
201 |
+
|
202 |
+
print(f"{qa_chain_response} stream")
|
203 |
+
|
204 |
# generated_text = ""
|
205 |
# for new_text in STREAMER:
|
206 |
# generated_text += new_text
|