Spaces:
Paused
Paused
Daniel Marques
commited on
Commit
·
c77782f
1
Parent(s):
cb776ef
feat: add history
Browse files- constants.py +2 -3
- main.py +1 -1
- run_localGPT.py +4 -2
constants.py
CHANGED
@@ -35,15 +35,14 @@ MAX_NEW_TOKENS = CONTEXT_WINDOW_SIZE # int(CONTEXT_WINDOW_SIZE/4)
|
|
35 |
|
36 |
#### If you get a "not enough space in the buffer" error, you should reduce the values below, start with half of the original values and keep halving the value until the error stops appearing
|
37 |
|
38 |
-
N_GPU_LAYERS =
|
39 |
-
N_BATCH =
|
40 |
|
41 |
### From experimenting with the Llama-2-7B-Chat-GGML model on 8GB VRAM, these values work:
|
42 |
# N_GPU_LAYERS = 20
|
43 |
# N_BATCH = 512
|
44 |
|
45 |
|
46 |
-
|
47 |
# https://python.langchain.com/en/latest/_modules/langchain/document_loaders/excel.html#UnstructuredExcelLoader
|
48 |
DOCUMENT_MAP = {
|
49 |
".txt": TextLoader,
|
|
|
35 |
|
36 |
#### If you get a "not enough space in the buffer" error, you should reduce the values below, start with half of the original values and keep halving the value until the error stops appearing
|
37 |
|
38 |
+
N_GPU_LAYERS = 50 # Llama-2-70B has 83 layers
|
39 |
+
N_BATCH = 2048
|
40 |
|
41 |
### From experimenting with the Llama-2-7B-Chat-GGML model on 8GB VRAM, these values work:
|
42 |
# N_GPU_LAYERS = 20
|
43 |
# N_BATCH = 512
|
44 |
|
45 |
|
|
|
46 |
# https://python.langchain.com/en/latest/_modules/langchain/document_loaders/excel.html#UnstructuredExcelLoader
|
47 |
DOCUMENT_MAP = {
|
48 |
".txt": TextLoader,
|
main.py
CHANGED
@@ -62,7 +62,7 @@ Question: {question}
|
|
62 |
|
63 |
memory = ConversationBufferMemory(input_key="question", memory_key="history")
|
64 |
|
65 |
-
QA_CHAIN_PROMPT = PromptTemplate
|
66 |
|
67 |
QA = RetrievalQA.from_chain_type(
|
68 |
llm=LLM,
|
|
|
62 |
|
63 |
memory = ConversationBufferMemory(input_key="question", memory_key="history")
|
64 |
|
65 |
+
QA_CHAIN_PROMPT = PromptTemplate(input_variables=["history", "context", "question"], template=template)
|
66 |
|
67 |
QA = RetrievalQA.from_chain_type(
|
68 |
llm=LLM,
|
run_localGPT.py
CHANGED
@@ -79,7 +79,7 @@ def load_model(device_type, model_id, model_basename=None, LOGGING=logging):
|
|
79 |
|
80 |
# Create a pipeline for text generation
|
81 |
|
82 |
-
streamer = TextStreamer(tokenizer)
|
83 |
|
84 |
pipe = pipeline(
|
85 |
"text-generation",
|
@@ -91,7 +91,9 @@ def load_model(device_type, model_id, model_basename=None, LOGGING=logging):
|
|
91 |
top_k=40,
|
92 |
repetition_penalty=1.0,
|
93 |
generation_config=generation_config,
|
94 |
-
streamer=streamer
|
|
|
|
|
95 |
)
|
96 |
|
97 |
local_llm = HuggingFacePipeline(pipeline=pipe)
|
|
|
79 |
|
80 |
# Create a pipeline for text generation
|
81 |
|
82 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True)
|
83 |
|
84 |
pipe = pipeline(
|
85 |
"text-generation",
|
|
|
91 |
top_k=40,
|
92 |
repetition_penalty=1.0,
|
93 |
generation_config=generation_config,
|
94 |
+
streamer=streamer,
|
95 |
+
num_return_sequences=1,
|
96 |
+
eos_token_id=tokenizer.eos_token_id
|
97 |
)
|
98 |
|
99 |
local_llm = HuggingFacePipeline(pipeline=pipe)
|