# syntax=docker/dockerfile:1 # Build as `docker build . -t localgpt`, requires BuildKit. # Run as `docker run -it --mount src="$HOME/.cache",target=/root/.cache,type=bind --gpus=all localgpt`, requires Nvidia container toolkit. ARG CUDA_IMAGE="12.1.1-devel-ubuntu22.04" FROM nvidia/cuda:${CUDA_IMAGE} RUN apt-get update && apt-get install -y software-properties-common RUN apt-get install -y g++-11 make python3 python-is-python3 pip # only copy what's needed at every step to optimize layer cache COPY ./requirements.txt . # use BuildKit cache mount to drastically reduce redownloading from pip on repeated builds RUN --mount=type=cache,target=/root/.cache CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install --timeout 100 -r requirements.txt llama-cpp-python==0.1.83 COPY SOURCE_DOCUMENTS ./SOURCE_DOCUMENTS COPY ingest.py constants.py ./ # Docker BuildKit does not support GPU during *docker build* time right now, only during *docker run*. # See . # If this changes in the future you can `docker build --build-arg device_type=cuda . -t localgpt` (+GPU argument to be determined). ARG device_type=cuda RUN --mount=type=cache,target=/root/.cache python ingest.py --device_type "cuda" COPY . . ENV device_type=cuda CMD python run_localGPT.py --device_type "cuda"