Dacho688 commited on
Commit
9398d0a
β€’
1 Parent(s): de3d152

Revert back req and readme

Browse files
Files changed (3) hide show
  1. README.md +1 -2
  2. requirements.txt +1 -6
  3. test_app.py +4 -9
README.md CHANGED
@@ -4,8 +4,7 @@ emoji: πŸ€”πŸ“Š
4
  colorFrom: yellow
5
  colorTo: red
6
  sdk: gradio
7
- sdk_version: 4.39.0
8
- python_version: 3.9
9
  app_file: app.py
10
  pinned: false
11
  license: apache-2.0
 
4
  colorFrom: yellow
5
  colorTo: red
6
  sdk: gradio
7
+ sdk_version: 4.38.1
 
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
requirements.txt CHANGED
@@ -2,9 +2,4 @@ git+https://github.com/huggingface/transformers.git#egg=transformers[agents]
2
  matplotlib
3
  seaborn
4
  scikit-learn
5
- scipy
6
- transformers
7
- pandas
8
- huggingface_hub
9
- numpy
10
- pandas
 
2
  matplotlib
3
  seaborn
4
  scikit-learn
5
+ scipy
 
 
 
 
 
test_app.py CHANGED
@@ -19,23 +19,18 @@ agent = ReactCodeAgent(
19
  additional_authorized_imports=["numpy", "pandas", "matplotlib", "seaborn","scipy"],
20
  max_iterations=10,
21
  )
22
-
23
- base_prompt = """You are an expert data analyst.
24
  You are given a data file and the data structure below.
25
  The data file is passed to you as the variable data_file, it is a pandas dataframe, you can use it directly.
26
  DO NOT try to load data_file, it is already a dataframe pre-loaded in your python interpreter!
27
-
 
28
  When importing packages use this format: from package import module
29
  For example: from matplotlib import pyplot as plt
30
  Not: import matplotlib.pyplot as plt
31
 
32
- As you work, check for NoneType values and convert to NAN.
33
-
34
  Use the data file to answer the question or solve a problem given below.
35
 
36
- In your final answer: summarize your findings
37
- After each number derive real worlds insights, for instance: "Correlation between is_december and boredness is 1.3453, which suggest people are more bored in winter".
38
-
39
  Structure of the data:
40
  {structure_notes}
41
 
@@ -136,4 +131,4 @@ Drop a `.csv` file below and ask a question about your data.
136
  submit.click(interact_with_agent, [file_input, text_input], [chatbot])
137
 
138
  if __name__ == "__main__":
139
- demo.launch(server_port=7861)
 
19
  additional_authorized_imports=["numpy", "pandas", "matplotlib", "seaborn","scipy"],
20
  max_iterations=10,
21
  )
22
+ base_prompt = """You are an expert full stack data analyst.
 
23
  You are given a data file and the data structure below.
24
  The data file is passed to you as the variable data_file, it is a pandas dataframe, you can use it directly.
25
  DO NOT try to load data_file, it is already a dataframe pre-loaded in your python interpreter!
26
+ When plotting using matplotlib/seaborn save the figures to the (already existing) folder'./figures/': take care to clear each figure with plt.clf() before doing another plot.
27
+ When filtering pandas dataframe use the iloc.
28
  When importing packages use this format: from package import module
29
  For example: from matplotlib import pyplot as plt
30
  Not: import matplotlib.pyplot as plt
31
 
 
 
32
  Use the data file to answer the question or solve a problem given below.
33
 
 
 
 
34
  Structure of the data:
35
  {structure_notes}
36
 
 
131
  submit.click(interact_with_agent, [file_input, text_input], [chatbot])
132
 
133
  if __name__ == "__main__":
134
+ demo.launch(server_port=7860)