Dacho688 commited on
Commit
d6042ff
β€’
1 Parent(s): 0f55eee

git commit

Files changed (4) hide show
  1. app.py +29 -23
  2. app_original.py +133 -0
  3. requirements.txt +6 -2
  4. test_app.py +29 -23
app.py CHANGED
@@ -9,32 +9,37 @@ from streaming import stream_to_gradio
9
  from huggingface_hub import login
10
  from gradio.data_classes import FileData
11
 
12
- login(os.getenv("HUGGINGFACEHUB_API_TOKEN"))
13
 
14
  llm_engine = HfEngine("meta-llama/Meta-Llama-3.1-70B-Instruct")
15
 
16
  agent = ReactCodeAgent(
17
  tools=[],
18
  llm_engine=llm_engine,
19
- additional_authorized_imports=["numpy", "pandas", "matplotlib.pyplot", "seaborn", "scipy.stats"],
20
  max_iterations=10,
21
  )
22
 
23
  base_prompt = """You are an expert data analyst.
24
- According to the features you have and the data structure given below, determine which feature should be the target.
25
- Then list 3 interesting questions that could be asked on this data, for instance about specific correlations with target variable.
26
- Then answer these questions one by one, by finding the relevant numbers.
27
- Meanwhile, plot some figures using matplotlib/seaborn and save them to the (already existing) folder './figures/': take care to clear each figure with plt.clf() before doing another plot.
 
 
 
 
 
28
 
29
- In your final answer: summarize these correlations and trends
 
 
30
  After each number derive real worlds insights, for instance: "Correlation between is_december and boredness is 1.3453, which suggest people are more bored in winter".
31
- Your final answer should be a long string with at least 3 numbered and detailed parts.
32
 
33
  Structure of the data:
34
  {structure_notes}
35
 
36
- The data file is passed to you as the variable data_file, it is a pandas dataframe, you can use it directly.
37
- DO NOT try to load data_file, it is already a dataframe pre-loaded in your python interpreter!
38
  """
39
 
40
  example_notes="""This data is about the Titanic wreck in 1912.
@@ -75,9 +80,9 @@ def interact_with_agent(file_input, additional_notes):
75
  prompt = base_prompt.format(structure_notes=data_structure_notes)
76
 
77
  if additional_notes and len(additional_notes) > 0:
78
- prompt += "\nAdditional notes on the data:\n" + additional_notes
79
 
80
- messages = [gr.ChatMessage(role="user", content=prompt)]
81
  yield messages + [
82
  gr.ChatMessage(role="assistant", content="⏳ _Starting task..._")
83
  ]
@@ -101,18 +106,19 @@ def interact_with_agent(file_input, additional_notes):
101
 
102
  with gr.Blocks(
103
  theme=gr.themes.Soft(
104
- primary_hue=gr.themes.colors.yellow,
105
- secondary_hue=gr.themes.colors.blue,
106
  )
107
  ) as demo:
108
  gr.Markdown("""# Llama-3.1 Data analyst πŸ“ŠπŸ€”
109
 
110
- Drop a `.csv` file below, add notes to describe this data if needed, and **Llama-3.1-70B will analyze the file content and draw figures for you!**""")
 
111
  file_input = gr.File(label="Your file to analyze")
112
  text_input = gr.Textbox(
113
- label="Additional notes to support the analysis"
114
  )
115
- submit = gr.Button("Run analysis!", variant="primary")
116
  chatbot = gr.Chatbot(
117
  label="Data Analyst Agent",
118
  type="messages",
@@ -121,13 +127,13 @@ Drop a `.csv` file below, add notes to describe this data if needed, and **Llama
121
  "https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png",
122
  ),
123
  )
124
- gr.Examples(
125
- examples=[["./example/titanic.csv", example_notes]],
126
- inputs=[file_input, text_input],
127
- cache_examples=False
128
- )
129
 
130
  submit.click(interact_with_agent, [file_input, text_input], [chatbot])
131
 
132
  if __name__ == "__main__":
133
- demo.launch()
 
9
  from huggingface_hub import login
10
  from gradio.data_classes import FileData
11
 
12
+ #login(os.getenv("HUGGINGFACEHUB_API_TOKEN"))
13
 
14
  llm_engine = HfEngine("meta-llama/Meta-Llama-3.1-70B-Instruct")
15
 
16
  agent = ReactCodeAgent(
17
  tools=[],
18
  llm_engine=llm_engine,
19
+ additional_authorized_imports=["numpy", "pandas", "matplotlib", "seaborn","scipy"],
20
  max_iterations=10,
21
  )
22
 
23
  base_prompt = """You are an expert data analyst.
24
+ You are given a data file and the data structure below.
25
+ The data file is passed to you as the variable data_file, it is a pandas dataframe, you can use it directly.
26
+ DO NOT try to load data_file, it is already a dataframe pre-loaded in your python interpreter!
27
+
28
+ When importing packages use this format: from package import module
29
+ For example: from matplotlib import pyplot as plt
30
+ Not: import matplotlib.pyplot as plt
31
+
32
+ As you work, check for NoneType values and convert to NAN.
33
 
34
+ Use the data file to answer the question or solve a problem given below.
35
+
36
+ In your final answer: summarize your findings
37
  After each number derive real worlds insights, for instance: "Correlation between is_december and boredness is 1.3453, which suggest people are more bored in winter".
 
38
 
39
  Structure of the data:
40
  {structure_notes}
41
 
42
+ Question/Problem:
 
43
  """
44
 
45
  example_notes="""This data is about the Titanic wreck in 1912.
 
80
  prompt = base_prompt.format(structure_notes=data_structure_notes)
81
 
82
  if additional_notes and len(additional_notes) > 0:
83
+ prompt += additional_notes
84
 
85
+ messages = [gr.ChatMessage(role="user", content=additional_notes)]
86
  yield messages + [
87
  gr.ChatMessage(role="assistant", content="⏳ _Starting task..._")
88
  ]
 
106
 
107
  with gr.Blocks(
108
  theme=gr.themes.Soft(
109
+ primary_hue=gr.themes.colors.blue,
110
+ secondary_hue=gr.themes.colors.yellow,
111
  )
112
  ) as demo:
113
  gr.Markdown("""# Llama-3.1 Data analyst πŸ“ŠπŸ€”
114
 
115
+ Drop a `.csv` file below and ask a question about your data.
116
+ **Llama-3.1-70B will analyze and answer.**""")
117
  file_input = gr.File(label="Your file to analyze")
118
  text_input = gr.Textbox(
119
+ label="Ask a question about your data?"
120
  )
121
+ submit = gr.Button("Run", variant="primary")
122
  chatbot = gr.Chatbot(
123
  label="Data Analyst Agent",
124
  type="messages",
 
127
  "https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png",
128
  ),
129
  )
130
+ # gr.Examples(
131
+ # examples=[["./example/titanic.csv", example_notes]],
132
+ # inputs=[file_input, text_input],
133
+ # cache_examples=False
134
+ # )
135
 
136
  submit.click(interact_with_agent, [file_input, text_input], [chatbot])
137
 
138
  if __name__ == "__main__":
139
+ demo.launch(server_port=7861)
app_original.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import shutil
3
+ import gradio as gr
4
+ from transformers import ReactCodeAgent, HfEngine, Tool
5
+ import pandas as pd
6
+
7
+ from gradio import Chatbot
8
+ from streaming import stream_to_gradio
9
+ from huggingface_hub import login
10
+ from gradio.data_classes import FileData
11
+
12
+ login(os.getenv("HUGGINGFACEHUB_API_TOKEN"))
13
+
14
+ llm_engine = HfEngine("meta-llama/Meta-Llama-3.1-70B-Instruct")
15
+
16
+ agent = ReactCodeAgent(
17
+ tools=[],
18
+ llm_engine=llm_engine,
19
+ additional_authorized_imports=["numpy", "pandas", "matplotlib.pyplot", "seaborn", "scipy.stats"],
20
+ max_iterations=10,
21
+ )
22
+
23
+ base_prompt = """You are an expert data analyst.
24
+ According to the features you have and the data structure given below, determine which feature should be the target.
25
+ Then list 3 interesting questions that could be asked on this data, for instance about specific correlations with target variable.
26
+ Then answer these questions one by one, by finding the relevant numbers.
27
+ Meanwhile, plot some figures using matplotlib/seaborn and save them to the (already existing) folder './figures/': take care to clear each figure with plt.clf() before doing another plot.
28
+
29
+ In your final answer: summarize these correlations and trends
30
+ After each number derive real worlds insights, for instance: "Correlation between is_december and boredness is 1.3453, which suggest people are more bored in winter".
31
+ Your final answer should be a long string with at least 3 numbered and detailed parts.
32
+
33
+ Structure of the data:
34
+ {structure_notes}
35
+
36
+ The data file is passed to you as the variable data_file, it is a pandas dataframe, you can use it directly.
37
+ DO NOT try to load data_file, it is already a dataframe pre-loaded in your python interpreter!
38
+ """
39
+
40
+ example_notes="""This data is about the Titanic wreck in 1912.
41
+ The target figure is the survival of passengers, notes by 'Survived'
42
+ pclass: A proxy for socio-economic status (SES)
43
+ 1st = Upper
44
+ 2nd = Middle
45
+ 3rd = Lower
46
+ age: Age is fractional if less than 1. If the age is estimated, is it in the form of xx.5
47
+ sibsp: The dataset defines family relations in this way...
48
+ Sibling = brother, sister, stepbrother, stepsister
49
+ Spouse = husband, wife (mistresses and fiancΓ©s were ignored)
50
+ parch: The dataset defines family relations in this way...
51
+ Parent = mother, father
52
+ Child = daughter, son, stepdaughter, stepson
53
+ Some children travelled only with a nanny, therefore parch=0 for them."""
54
+
55
+ def get_images_in_directory(directory):
56
+ image_extensions = {'.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff'}
57
+
58
+ image_files = []
59
+ for root, dirs, files in os.walk(directory):
60
+ for file in files:
61
+ if os.path.splitext(file)[1].lower() in image_extensions:
62
+ image_files.append(os.path.join(root, file))
63
+ return image_files
64
+
65
+ def interact_with_agent(file_input, additional_notes):
66
+ shutil.rmtree("./figures")
67
+ os.makedirs("./figures")
68
+
69
+ data_file = pd.read_csv(file_input)
70
+ data_structure_notes = f"""- Description (output of .describe()):
71
+ {data_file.describe()}
72
+ - Columns with dtypes:
73
+ {data_file.dtypes}"""
74
+
75
+ prompt = base_prompt.format(structure_notes=data_structure_notes)
76
+
77
+ if additional_notes and len(additional_notes) > 0:
78
+ prompt += "\nAdditional notes on the data:\n" + additional_notes
79
+
80
+ messages = [gr.ChatMessage(role="user", content=prompt)]
81
+ yield messages + [
82
+ gr.ChatMessage(role="assistant", content="⏳ _Starting task..._")
83
+ ]
84
+
85
+ plot_image_paths = {}
86
+ for msg in stream_to_gradio(agent, prompt, data_file=data_file):
87
+ messages.append(msg)
88
+ for image_path in get_images_in_directory("./figures"):
89
+ if image_path not in plot_image_paths:
90
+ image_message = gr.ChatMessage(
91
+ role="assistant",
92
+ content=FileData(path=image_path, mime_type="image/png"),
93
+ )
94
+ plot_image_paths[image_path] = True
95
+ messages.append(image_message)
96
+ yield messages + [
97
+ gr.ChatMessage(role="assistant", content="⏳ _Still processing..._")
98
+ ]
99
+ yield messages
100
+
101
+
102
+ with gr.Blocks(
103
+ theme=gr.themes.Soft(
104
+ primary_hue=gr.themes.colors.yellow,
105
+ secondary_hue=gr.themes.colors.blue,
106
+ )
107
+ ) as demo:
108
+ gr.Markdown("""# Llama-3.1 Data analyst πŸ“ŠπŸ€”
109
+
110
+ Drop a `.csv` file below, add notes to describe this data if needed, and **Llama-3.1-70B will analyze the file content and draw figures for you!**""")
111
+ file_input = gr.File(label="Your file to analyze")
112
+ text_input = gr.Textbox(
113
+ label="Additional notes to support the analysis"
114
+ )
115
+ submit = gr.Button("Run analysis!", variant="primary")
116
+ chatbot = gr.Chatbot(
117
+ label="Data Analyst Agent",
118
+ type="messages",
119
+ avatar_images=(
120
+ None,
121
+ "https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png",
122
+ ),
123
+ )
124
+ gr.Examples(
125
+ examples=[["./example/titanic.csv", example_notes]],
126
+ inputs=[file_input, text_input],
127
+ cache_examples=False
128
+ )
129
+
130
+ submit.click(interact_with_agent, [file_input, text_input], [chatbot])
131
+
132
+ if __name__ == "__main__":
133
+ demo.launch()
requirements.txt CHANGED
@@ -1,5 +1,9 @@
1
- git+https://github.com/huggingface/transformers.git#egg=transformers[agents]
2
  matplotlib
3
  seaborn
4
  scikit-learn
5
- scipy
 
 
 
 
 
1
+ #git+https://github.com/huggingface/transformers.git#egg=transformers[agents]
2
  matplotlib
3
  seaborn
4
  scikit-learn
5
+ scipy
6
+ transformers
7
+ pandas==2.2.2
8
+ huggingface_hub
9
+ transformers
test_app.py CHANGED
@@ -9,32 +9,37 @@ from test_streaming import stream_to_gradio
9
  from huggingface_hub import login
10
  from gradio.data_classes import FileData
11
 
12
- login(os.getenv("HUGGINGFACEHUB_API_TOKEN"))
13
 
14
  llm_engine = HfEngine("meta-llama/Meta-Llama-3.1-70B-Instruct")
15
 
16
  agent = ReactCodeAgent(
17
  tools=[],
18
  llm_engine=llm_engine,
19
- additional_authorized_imports=["numpy", "pandas", "matplotlib.pyplot", "seaborn", "scipy.stats"],
20
  max_iterations=10,
21
  )
22
 
23
  base_prompt = """You are an expert data analyst.
24
- According to the features you have and the data structure given below, determine which feature should be the target.
25
- Then list 3 interesting questions that could be asked on this data, for instance about specific correlations with target variable.
26
- Then answer these questions one by one, by finding the relevant numbers.
27
- Meanwhile, plot some figures using matplotlib/seaborn and save them to the (already existing) folder './figures/': take care to clear each figure with plt.clf() before doing another plot.
 
 
 
 
 
28
 
29
- In your final answer: summarize these correlations and trends
 
 
30
  After each number derive real worlds insights, for instance: "Correlation between is_december and boredness is 1.3453, which suggest people are more bored in winter".
31
- Your final answer should be a long string with at least 3 numbered and detailed parts.
32
 
33
  Structure of the data:
34
  {structure_notes}
35
 
36
- The data file is passed to you as the variable data_file, it is a pandas dataframe, you can use it directly.
37
- DO NOT try to load data_file, it is already a dataframe pre-loaded in your python interpreter!
38
  """
39
 
40
  example_notes="""This data is about the Titanic wreck in 1912.
@@ -75,9 +80,9 @@ def interact_with_agent(file_input, additional_notes):
75
  prompt = base_prompt.format(structure_notes=data_structure_notes)
76
 
77
  if additional_notes and len(additional_notes) > 0:
78
- prompt += "\nAdditional notes on the data:\n" + additional_notes
79
 
80
- messages = [gr.ChatMessage(role="user", content=prompt)]
81
  yield messages + [
82
  gr.ChatMessage(role="assistant", content="⏳ _Starting task..._")
83
  ]
@@ -101,18 +106,19 @@ def interact_with_agent(file_input, additional_notes):
101
 
102
  with gr.Blocks(
103
  theme=gr.themes.Soft(
104
- primary_hue=gr.themes.colors.yellow,
105
- secondary_hue=gr.themes.colors.blue,
106
  )
107
  ) as demo:
108
  gr.Markdown("""# Llama-3.1 Data analyst πŸ“ŠπŸ€”
109
 
110
- Drop a `.csv` file below, add notes to describe this data if needed, and **Llama-3.1-70B will analyze the file content and draw figures for you!**""")
 
111
  file_input = gr.File(label="Your file to analyze")
112
  text_input = gr.Textbox(
113
- label="Additional notes to support the analysis"
114
  )
115
- submit = gr.Button("Run analysis!", variant="primary")
116
  chatbot = gr.Chatbot(
117
  label="Data Analyst Agent",
118
  type="messages",
@@ -121,13 +127,13 @@ Drop a `.csv` file below, add notes to describe this data if needed, and **Llama
121
  "https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png",
122
  ),
123
  )
124
- gr.Examples(
125
- examples=[["./example/titanic.csv", example_notes]],
126
- inputs=[file_input, text_input],
127
- cache_examples=False
128
- )
129
 
130
  submit.click(interact_with_agent, [file_input, text_input], [chatbot])
131
 
132
  if __name__ == "__main__":
133
- demo.launch()
 
9
  from huggingface_hub import login
10
  from gradio.data_classes import FileData
11
 
12
+ #login(os.getenv("HUGGINGFACEHUB_API_TOKEN"))
13
 
14
  llm_engine = HfEngine("meta-llama/Meta-Llama-3.1-70B-Instruct")
15
 
16
  agent = ReactCodeAgent(
17
  tools=[],
18
  llm_engine=llm_engine,
19
+ additional_authorized_imports=["numpy", "pandas", "matplotlib", "seaborn","scipy"],
20
  max_iterations=10,
21
  )
22
 
23
  base_prompt = """You are an expert data analyst.
24
+ You are given a data file and the data structure below.
25
+ The data file is passed to you as the variable data_file, it is a pandas dataframe, you can use it directly.
26
+ DO NOT try to load data_file, it is already a dataframe pre-loaded in your python interpreter!
27
+
28
+ When importing packages use this format: from package import module
29
+ For example: from matplotlib import pyplot as plt
30
+ Not: import matplotlib.pyplot as plt
31
+
32
+ As you work, check for NoneType values and convert to NAN.
33
 
34
+ Use the data file to answer the question or solve a problem given below.
35
+
36
+ In your final answer: summarize your findings
37
  After each number derive real worlds insights, for instance: "Correlation between is_december and boredness is 1.3453, which suggest people are more bored in winter".
 
38
 
39
  Structure of the data:
40
  {structure_notes}
41
 
42
+ Question/Problem:
 
43
  """
44
 
45
  example_notes="""This data is about the Titanic wreck in 1912.
 
80
  prompt = base_prompt.format(structure_notes=data_structure_notes)
81
 
82
  if additional_notes and len(additional_notes) > 0:
83
+ prompt += additional_notes
84
 
85
+ messages = [gr.ChatMessage(role="user", content=additional_notes)]
86
  yield messages + [
87
  gr.ChatMessage(role="assistant", content="⏳ _Starting task..._")
88
  ]
 
106
 
107
  with gr.Blocks(
108
  theme=gr.themes.Soft(
109
+ primary_hue=gr.themes.colors.blue,
110
+ secondary_hue=gr.themes.colors.yellow,
111
  )
112
  ) as demo:
113
  gr.Markdown("""# Llama-3.1 Data analyst πŸ“ŠπŸ€”
114
 
115
+ Drop a `.csv` file below and ask a question about your data.
116
+ **Llama-3.1-70B will analyze and answer.**""")
117
  file_input = gr.File(label="Your file to analyze")
118
  text_input = gr.Textbox(
119
+ label="Ask a question about your data?"
120
  )
121
+ submit = gr.Button("Run", variant="primary")
122
  chatbot = gr.Chatbot(
123
  label="Data Analyst Agent",
124
  type="messages",
 
127
  "https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png",
128
  ),
129
  )
130
+ # gr.Examples(
131
+ # examples=[["./example/titanic.csv", example_notes]],
132
+ # inputs=[file_input, text_input],
133
+ # cache_examples=False
134
+ # )
135
 
136
  submit.click(interact_with_agent, [file_input, text_input], [chatbot])
137
 
138
  if __name__ == "__main__":
139
+ demo.launch(server_port=7861)