## Environment Setup `pip install -r requirements.txt` ## Download checkpoints 1. Download the pretrained checkpoints of [SVD_xt](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt-1-1) from huggingface to `./ckpts`. 2. Download the checkpoint of [MOFA-Adapter](https://huggingface.co/MyNiuuu/MOFA-Video-Traj) from huggingface to `./ckpts`. 3. Download the checkpoint of CMP from [here](https://huggingface.co/MyNiuuu/MOFA-Video-Traj/blob/main/models/cmp/experiments/semiauto_annot/resnet50_vip%2Bmpii_liteflow/checkpoints/ckpt_iter_42000.pth.tar) and put it into `./models/cmp/experiments/semiauto_annot/resnet50_vip+mpii_liteflow/checkpoints`. The final structure of checkpoints should be: ```text ./ckpts/ |-- controlnet | |-- config.json | `-- diffusion_pytorch_model.safetensors |-- stable-video-diffusion-img2vid-xt-1-1 | |-- feature_extractor | |-- ... | |-- image_encoder | |-- ... | |-- scheduler | |-- ... | |-- unet | |-- ... | |-- unet_ch9 | |-- ... | |-- vae | |-- ... | |-- svd_xt_1_1.safetensors | `-- model_index.json ``` ## Run Gradio Demo `python run_gradio.py` Please refer to the instructions on the gradio interface during the inference process.