Spaces:
Running
Running
File size: 10,162 Bytes
9021b39 dfc6dc5 693929a dfc6dc5 693929a dfc6dc5 7a9ec21 693929a 9021b39 dfc6dc5 693929a dfc6dc5 693929a dfc6dc5 4969145 693929a 4969145 693929a 4969145 10de6c4 89acc00 4969145 9021b39 693929a 4969145 693929a dfc6dc5 9021b39 dfc6dc5 9021b39 dfc6dc5 9021b39 dfc6dc5 693929a dfc6dc5 693929a dfc6dc5 9021b39 4969145 dfc6dc5 4969145 693929a 4969145 693929a 89acc00 693929a dfc6dc5 693929a dfc6dc5 693929a dfc6dc5 4969145 7a9ec21 4969145 dfc6dc5 4969145 dfc6dc5 4969145 dfc6dc5 61ec090 89acc00 4969145 89acc00 4969145 2580fdf dfc6dc5 2580fdf 4969145 61ec090 3e3d4e8 61ec090 4969145 dfc6dc5 fe7b694 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import glob
import gradio as gr
import openai
import os
from dotenv import load_dotenv
import phoenix as px
import llama_index
from llama_index import Prompt, ServiceContext, VectorStoreIndex, SimpleDirectoryReader
from llama_index.chat_engine.types import ChatMode
from llama_index.llms import ChatMessage, MessageRole
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.text_splitter import SentenceSplitter
from llama_index.extractors import TitleExtractor
from llama_index.ingestion import IngestionPipeline
from chat_template import CHAT_TEXT_QA_PROMPT, TEXT_QA_SYSTEM_PROMPT
from schemas import ChatbotVersion, ServiceProvider
from chatbot import Chatbot, IndexBuilder
from custom_io import MarkdownReader, UnstructuredReader, default_file_metadata_func
from qdrant import client as qdrantClient
from llama_index import set_global_service_context
from service_provider_config import get_service_provider_config
load_dotenv()
# initial service setup
px.launch_app()
llama_index.set_global_handler("arize_phoenix")
# llama_index.set_global_handler("wandb", run_args={"project": "llamaindex"})
openai.api_key = os.getenv("OPENAI_API_KEY")
IS_LOAD_FROM_VECTOR_STORE = True
VDB_COLLECTION_NAME = "demo-v5"
MODEL_NAME = ChatbotVersion.CHATGPT_4.value
CHUNK_SIZE = 8191
LLM, EMBED_MODEL = get_service_provider_config(
service_provider=ServiceProvider.OPENAI, model_name=MODEL_NAME)
service_context = ServiceContext.from_defaults(
chunk_size=CHUNK_SIZE,
llm=LLM,
embed_model=EMBED_MODEL,
)
set_global_service_context(service_context)
class AwesumIndexBuilder(IndexBuilder):
def _load_doucments(self):
directory = "./awesumcare_data/awesumcare_manual_data"
# all_files = glob.glob(os.path.join(directory, '*.md'))
# faq_files = [f for f in all_files if 'FAQ' in os.path.basename(f)]
# print(faq_files)
dir_reader = SimpleDirectoryReader(directory, file_extractor={
".pdf": UnstructuredReader(),
".docx": UnstructuredReader(),
".pptx": UnstructuredReader(),
".md": MarkdownReader()
},
recursive=True,
# input_files=faq_files,
exclude=["*.png", "*.pptx", "*.docx", "*.pdf"],
file_metadata=default_file_metadata_func)
self.documents = dir_reader.load_data()
print(f"Loaded {len(self.documents)} docs")
def _setup_service_context(self):
super()._setup_service_context()
def _setup_vector_store(self):
self.vector_store = QdrantVectorStore(
client=qdrantClient, collection_name=self.vdb_collection_name)
super()._setup_vector_store()
def _setup_index(self):
super()._setup_index()
if self.is_load_from_vector_store:
self.index = VectorStoreIndex.from_vector_store(self.vector_store)
print("set up index from vector store")
return
pipeline = IngestionPipeline(
transformations=[
# SentenceSplitter(),
self.embed_model,
],
vector_store=self.vector_store,
)
pipeline.run(documents=self.documents, show_progress=True)
self.index = VectorStoreIndex.from_vector_store(self.vector_store)
class AwesumCareToolChatbot(Chatbot):
DENIED_ANSWER_PROMPT = ""
SYSTEM_PROMPT = ""
CHAT_EXAMPLES = [
"什麼是安心三寶?",
"點樣立平安紙?",
"甚麼是⾒證?",
"訂立每份⽂件需要多少錢以及付款⽅法?",
"通過安⼼三寶製作的⽂件有法律效⼒嗎?",
]
def _setup_observer(self):
pass
def _setup_index(self):
super()._setup_index()
# def _setup_index(self):
# self.index = VectorStoreIndex.from_documents(
# self.documents,
# service_context=self.service_context
# )
# super()._setup_index()
def _setup_query_engine(self):
super()._setup_query_engine()
self.query_engine = self.index.as_query_engine(
text_qa_template=CHAT_TEXT_QA_PROMPT)
def _setup_tools(self):
from llama_index.tools.query_engine import QueryEngineTool
self.tools = QueryEngineTool.from_defaults(
query_engine=self.query_engine)
return super()._setup_tools()
def _setup_chat_engine(self):
# testing #
from llama_index.agent import OpenAIAgent
self.chat_engine = OpenAIAgent.from_tools(
tools=[self.tools],
llm=LLM,
similarity_top_k=1,
verbose=True
)
print("set up agent as chat engine")
# testing #
# self.chat_engine = self.index.as_chat_engine(
# chat_mode=ChatMode.BEST,
# similarity_top_k=5,
# text_qa_template=CHAT_TEXT_QA_PROMPT)
super()._setup_chat_engine()
class AweSumCareContextChatbot(AwesumCareToolChatbot):
def _setup_query_engine(self):
pass
def _setup_tools(self):
pass
def _setup_chat_engine(self):
self.chat_engine = self.index.as_chat_engine(
chat_mode=ChatMode.CONTEXT,
similarity_top_k=5,
system_prompt=TEXT_QA_SYSTEM_PROMPT.content,
text_qa_template=CHAT_TEXT_QA_PROMPT)
class AweSumCareSimpleChatbot(AwesumCareToolChatbot):
def _setup_query_engine(self):
pass
def _setup_tools(self):
pass
def _setup_chat_engine(self):
self.chat_engine = self.index.as_chat_engine(
chat_mode=ChatMode.SIMPLE)
model_name = MODEL_NAME
index_builder = AwesumIndexBuilder(vdb_collection_name=VDB_COLLECTION_NAME,
embed_model=EMBED_MODEL,
is_load_from_vector_store=IS_LOAD_FROM_VECTOR_STORE)
# gpt-3.5-turbo-1106, gpt-4-1106-preview
awesum_chatbot = AwesumCareToolChatbot(model_name=model_name, index_builder=index_builder)
awesum_chatbot_context = AweSumCareContextChatbot(model_name=model_name, index_builder=index_builder)
awesum_chatbot_simple = AweSumCareSimpleChatbot(model_name=model_name, index_builder=index_builder)
def service_setup(model_name):
CHUNK_SIZE = 1024
LLM, EMBED_MODEL = get_service_provider_config(
service_provider=ServiceProvider.OPENAI, model_name=model_name)
service_context = ServiceContext.from_defaults(
chunk_size=CHUNK_SIZE,
llm=LLM,
embed_model=EMBED_MODEL,
)
set_global_service_context(service_context)
return LLM, EMBED_MODEL
def vote(data: gr.LikeData):
if data.liked:
gr.Info("You up-voted this response: " + data.value)
else:
gr.Info("You down-voted this response: " + data.value)
chatbot = gr.Chatbot()
with gr.Blocks() as demo:
gr.Markdown("# Awesum Care demo")
# with gr.Row():
# model_selector = gr.Radio(
# value=ChatbotVersion.CHATGPT_35.value,
# choices=[ChatbotVersion.CHATGPT_35.value, ChatbotVersion.CHATGPT_4.value],
# label="Select Chatbot Model (To be implemented)"
# )
with gr.Tab("With relevant context sent to system prompt"):
context_interface = gr.ChatInterface(
awesum_chatbot_context.stream_chat,
examples=awesum_chatbot.CHAT_EXAMPLES,
)
chatbot.like(vote, None, None)
# with gr.Tab("With function calling as tool to retrieve"):
# function_call_interface = gr.ChatInterface(
# awesum_chatbot.stream_chat,
# examples=awesum_chatbot.CHAT_EXAMPLES,
# )
# chatbot.like(vote, None, None)
# with gr.Tab("Vanilla ChatGPT without modification"):
# vanilla_interface = gr.ChatInterface(
# awesum_chatbot_simple.stream_chat,
# examples=awesum_chatbot.CHAT_EXAMPLES)
gr.Markdown("instructions:\n"
"\nUsing model gpt-4-preview-1106, the most advanced model now in the market.\n"
"\n(Note that it can be much slower than gpt-3.5, openai's api can be unstable sometimes.)\n"
# "\nThree Tabs:\n"
# "1. Relevant context: retreiving relevant documents and send to ChatGPT.\n"
# "2. Give tools to chatgpt to retrieve context: the most advanced, slowest (>30s to use the tools, before answering).\n"
# "3. Vanilla ChatGPT: self-explanatory.\n"
)
# @model_selector.change(inputs=[model_selector, chatbot], outputs=[context_interface, function_call_interface, vanilla_interface])
# def switch_model(model_name, my_chatbot):
# print(model_name)
# print(my_chatbot.config())
# LLM, EMBED_MODEL = service_setup(model_name)
# # global awesum_chatbot, awesum_chatbot_context, awesum_chatbot_simple
# # Logic to switch models - create new instances of the chatbots with the selected model
# index_builder = AwesumIndexBuilder(vdb_collection_name=VDB_COLLECTION_NAME,
# embed_model=EMBED_MODEL,
# is_load_from_vector_store=IS_LOAD_FROM_VECTOR_STORE)
# awesum_chatbot = AwesumCareToolChatbot(model_name=model_name, index_builder=index_builder, llm=LLM)
# awesum_chatbot_context = AweSumCareContextChatbot(model_name=model_name, index_builder=index_builder)
# awesum_chatbot_simple = AweSumCareSimpleChatbot(model_name=model_name, index_builder=index_builder)
# # return awesum_chatbot.stream_chat, awesum_chatbot_context.stream_chat, awesum_chatbot_simple.stream_chat
# new_context_interface = gr.ChatInterface(
# awesum_chatbot_context.stream_chat,
# )
# new_function_call_interface = gr.ChatInterface(
# awesum_chatbot.stream_chat,
# )
# new_vanilla_interface = gr.ChatInterface(
# awesum_chatbot_simple.stream_chat,
# )
# return new_context_interface, new_function_call_interface, new_vanilla_interface
demo.queue()
demo.launch(share=False, auth=("demo", os.getenv("PASSWORD")))
|