File size: 4,992 Bytes
dfc6dc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import re
from typing import List
import gradio as gr
import openai
import os
from dotenv import load_dotenv
import phoenix as px
import llama_index
from llama_index import OpenAIEmbedding, Prompt, ServiceContext, VectorStoreIndex, SimpleDirectoryReader
from llama_index.chat_engine.types import ChatMode
from llama_index.llms import ChatMessage, MessageRole, OpenAI
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.text_splitter import SentenceSplitter
from llama_index.extractors import TitleExtractor
from llama_index.ingestion import IngestionPipeline
from chat_template import CHAT_TEXT_QA_PROMPT
from chatbot import Chatbot, ChatbotVersion
from custom_io import UnstructuredReader, default_file_metadata_func
from qdrant import client as qdrantClient

load_dotenv()
openai.api_key = os.getenv("OPENAI_API_KEY")


class AwesumCareChatbot(Chatbot):
    DENIED_ANSWER_PROMPT = ""
    SYSTEM_PROMPT = ""
    CHAT_EXAMPLES = [
        "什麼是安心三寶?",
        "點樣立平安紙?"
    ]

    def _load_doucments(self):
        dir_reader = SimpleDirectoryReader('./awesumcare_data', file_extractor={
            ".pdf": UnstructuredReader(),
            ".docx": UnstructuredReader(),
            ".pptx": UnstructuredReader(),
        },
            recursive=True,
            exclude=["*.png", "*.pptx"],
            file_metadata=default_file_metadata_func)

        self.documents = dir_reader.load_data()
        super()._load_doucments()

    def _setup_service_context(self):
        self.service_context = ServiceContext.from_defaults(
            chunk_size=self.chunk_size,
            llm=self.llm,
            embed_model=self.embed_model
        )
        super()._setup_service_context()

    def _setup_vector_store(self):
        self.vector_store = QdrantVectorStore(
            client=qdrantClient, collection_name=self.vdb_collection_name)
        super()._setup_vector_store()

    def _setup_index(self):
        if self.vdb_collection_name in [col.name for col in qdrantClient.get_collections().collections] and qdrantClient.get_collection(self.vdb_collection_name).vectors_count > 0:
            self.index = VectorStoreIndex.from_vector_store(
                self.vector_store, service_context=self.service_context)
            print("set up index from vector store")
            return
        pipeline = IngestionPipeline(
            transformations=[
                SentenceSplitter(),
                OpenAIEmbedding(),
            ],
            vector_store=self.vector_store,
        )
        pipeline.run(documents=self.documents)
        self.index = VectorStoreIndex.from_vector_store(
            self.vector_store, service_context=self.service_context)
        super()._setup_index()

    # def _setup_index(self):
    #     self.index = VectorStoreIndex.from_documents(
    #         self.documents,
    #         service_context=self.service_context
    #     )
    #     super()._setup_index()

    def _setup_chat_engine(self):
        # testing #
        from llama_index.agent import OpenAIAgent
        from llama_index.tools.query_engine import QueryEngineTool

        query_engine = self.index.as_query_engine(
            text_qa_template=CHAT_TEXT_QA_PROMPT)
        query_engine_tool = QueryEngineTool.from_defaults(
            query_engine=query_engine)
        self.chat_engine = OpenAIAgent.from_tools(
            tools=[query_engine_tool],
            llm=self.service_context.llm,
            similarity_top_k=1,
            verbose=True
        )
        print("set up agent as chat engine")
        # testing #
        # self.chat_engine = self.index.as_chat_engine(
        #     chat_mode=ChatMode.BEST,
        #     similarity_top_k=5,
        #     text_qa_template=CHAT_TEXT_QA_PROMPT)
        super()._setup_chat_engine()


# gpt-3.5-turbo-1106, gpt-4-1106-preview
awesum_chatbot = AwesumCareChatbot(ChatbotVersion.CHATGPT_35.value,
                                   chunk_size=2048,
                                   vdb_collection_name="v2")


def vote(data: gr.LikeData):
    if data.liked:
        gr.Info("You up-voted this response: " + data.value)
    else:
        gr.Info("You down-voted this response: " + data.value)


chatbot = gr.Chatbot()

with gr.Blocks() as demo:
    gr.Markdown("# Awesum Care demo")

    with gr.Tab("With awesum care data prepared"):
        gr.ChatInterface(
            awesum_chatbot.stream_chat,
            chatbot=chatbot,
            examples=awesum_chatbot.CHAT_EXAMPLES,
        )
        chatbot.like(vote, None, None)

    with gr.Tab("With Initial System Prompt (a.k.a. prompt wrapper)"):
        gr.ChatInterface(
            awesum_chatbot.predict_with_prompt_wrapper, examples=awesum_chatbot.CHAT_EXAMPLES)

    with gr.Tab("Vanilla ChatGPT without modification"):
        gr.ChatInterface(awesum_chatbot.predict_vanilla_chatgpt,
                         examples=awesum_chatbot.CHAT_EXAMPLES)

demo.queue()
demo.launch()