File size: 6,823 Bytes
1b8b226 e0edc6d 0d4c368 1b8b226 e0edc6d 1b8b226 cf5e6bf 1b8b226 cf5e6bf 1b8b226 b7f3942 1b8b226 9f5f67d 1b8b226 38e388c 1b8b226 38e388c 1b8b226 797cd30 1b8b226 fc1702b 1b8b226 8ea5b1f 1b8b226 8ea5b1f 797cd30 8ea5b1f 1b8b226 9f5f67d beeddbb 8e5e901 1b8b226 c6b10d8 fc1702b c6b10d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import os
if os.getenv('SPACES_ZERO_GPU') == "true":
os.environ['SPACES_ZERO_GPU'] = "1"
import spaces
import cv2
import gradio as gr
import torch
from basicsr.archs.srvgg_arch import SRVGGNetCompact
from basicsr.utils import img2tensor, tensor2img
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
from realesrgan.utils import RealESRGANer
from lightning_models.mmse_rectified_flow import MMSERectifiedFlow
torch.set_grad_enabled(False)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
os.makedirs('pretrained_models', exist_ok=True)
realesr_model_path = 'pretrained_models/RealESRGAN_x4plus.pth'
if not os.path.exists(realesr_model_path):
os.system(
"wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -O pretrained_models/RealESRGAN_x4plus.pth")
# background enhancer with RealESRGAN
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
half = True if torch.cuda.is_available() else False
upsampler = RealESRGANer(scale=4, model_path=realesr_model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
pmrf = MMSERectifiedFlow.from_pretrained('ohayonguy/PMRF_blind_face_image_restoration').to(device)
face_helper_dummy = FaceRestoreHelper(
1,
face_size=512,
crop_ratio=(1, 1),
det_model='retinaface_resnet50',
save_ext='png',
use_parse=True,
device=device,
model_rootpath=None)
os.makedirs('output', exist_ok=True)
def generate_reconstructions(pmrf_model, x, y, non_noisy_z0, num_flow_steps, device):
source_dist_samples = pmrf_model.create_source_distribution_samples(x, y, non_noisy_z0)
dt = (1.0 / num_flow_steps) * (1.0 - pmrf_model.hparams.eps)
x_t_next = source_dist_samples.clone()
t_one = torch.ones(x.shape[0], device=device)
for i in range(num_flow_steps):
num_t = (i / num_flow_steps) * (1.0 - pmrf_model.hparams.eps) + pmrf_model.hparams.eps
v_t_next = pmrf_model(x_t=x_t_next, t=t_one * num_t, y=y).to(x_t_next.dtype)
x_t_next = x_t_next.clone() + v_t_next * dt
return x_t_next.clip(0, 1).to(torch.float32)
def enhance_face(img, face_helper, has_aligned, only_center_face=False, paste_back=True, scale=2):
face_helper.clean_all()
if has_aligned: # the inputs are already aligned
img = cv2.resize(img, (512, 512))
face_helper.cropped_faces = [img]
else:
face_helper.read_image(img)
face_helper.get_face_landmarks_5(only_center_face=only_center_face, eye_dist_threshold=5)
# eye_dist_threshold=5: skip faces whose eye distance is smaller than 5 pixels
# TODO: even with eye_dist_threshold, it will still introduce wrong detections and restorations.
# align and warp each face
face_helper.align_warp_face()
# face restoration
for cropped_face in face_helper.cropped_faces:
# prepare data
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
try:
dummy_x = torch.zeros_like(cropped_face_t)
output = generate_reconstructions(pmrf, dummy_x, cropped_face_t, None, 25, device)
restored_face = tensor2img(output.squeeze(0), rgb2bgr=True, min_max=(0, 1))
except RuntimeError as error:
print(f'\tFailed inference for PMRF: {error}.')
restored_face = cropped_face
restored_face = restored_face.astype('uint8')
face_helper.add_restored_face(restored_face)
if not has_aligned and paste_back:
# upsample the background
if upsampler is not None:
# Now only support RealESRGAN for upsampling background
bg_img = upsampler.enhance(img, outscale=scale)[0]
else:
bg_img = None
face_helper.get_inverse_affine(None)
# paste each restored face to the input image
restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img)
return face_helper.cropped_faces, face_helper.restored_faces, restored_img
else:
return face_helper.cropped_faces, face_helper.restored_faces, None
@spaces.GPU()
def inference(img, aligned, scale, num_steps):
if scale > 4:
scale = 4 # avoid too large scale value
img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
if len(img.shape) == 3 and img.shape[2] == 4:
img_mode = 'RGBA'
elif len(img.shape) == 2: # for gray inputs
img_mode = None
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
else:
img_mode = None
h, w = img.shape[0:2]
if h > 3500 or w > 3500:
print('Image size too large.')
return None, None
if h < 300:
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
face_helper = FaceRestoreHelper(
scale,
face_size=512,
crop_ratio=(1, 1),
det_model='retinaface_resnet50',
save_ext='png',
use_parse=True,
device=device,
model_rootpath=None)
has_aligned = True if aligned == 'Yes' else False
_, restored_aligned, restored_img = enhance_face(img, face_helper, has_aligned, only_center_face=False,
paste_back=True)
if has_aligned:
output = restored_aligned[0]
else:
output = restored_img
# try:
# if scale != 2:
# interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
# h, w = img.shape[0:2]
# output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
# except Exception as error:
# print('Wrong scale input.', error)
if img_mode == 'RGBA': # RGBA images should be saved in png format
extension = 'png'
else:
extension = 'jpg'
save_path = f'output/out.{extension}'
cv2.imwrite(save_path, output)
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
return output, save_path
# except Exception as error:
# print('global exception', error)
# return None, None
css = r"""
"""
demo = gr.Interface(
inference, [
gr.Image(type="filepath", label="Input"),
gr.Radio(['Yes', 'No'], type="value", value='aligned', label='Is the input an aligned face image?'),
gr.Number(label="Rescaling factor (the rescaling factor of the final image)", value=2),
gr.Number(label="Number of flow steps (a higher value leads to better image quality at the expense of runtime)", value=25),
], [
gr.Image(type="numpy", label="Output (The whole image)"),
gr.File(label="Download the output image")
],
).launch()
#
# demo.queue()
# demo.launch(state_session_capacity=15) |