Spaces:
doevent
/
Running on Zero

File size: 4,627 Bytes
b7f3942
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from arch.hourglass import image_transformer_v2 as itv2
from arch.hourglass.image_transformer_v2 import ImageTransformerDenoiserModelV2
from arch.swinir.swinir import SwinIR


def create_arch(arch, condition_channels=0):
    # arch should be, e.g., swinir_XL, or hdit_XL
    arch_name, arch_size = arch.split('_')
    arch_config = arch_configs[arch_name][arch_size].copy()
    arch_config['in_channels'] += condition_channels
    return arch_name_to_object[arch_name](**arch_config)


arch_configs = {
    'hdit': {
        "ImageNet256Sp4": {
            'in_channels': 3,
            'out_channels': 3,
            'widths': [256, 512, 1024],
            'depths': [2, 2, 8],
            'patch_size': [4, 4],
            'self_attns': [
                {"type": "neighborhood", "d_head": 64, "kernel_size": 7},
                {"type": "neighborhood", "d_head": 64, "kernel_size": 7},
                {"type": "global", "d_head": 64}
            ],
            'mapping_depth': 2,
            'mapping_width': 768,
            'dropout_rate': [0, 0, 0],
            'mapping_dropout_rate': 0.0
        },
        "XL2": {
            'in_channels': 3,
            'out_channels': 3,
            'widths': [384, 768],
            'depths': [2, 11],
            'patch_size': [4, 4],
            'self_attns': [
                {"type": "neighborhood", "d_head": 64, "kernel_size": 7},
                {"type": "global", "d_head": 64}
            ],
            'mapping_depth': 2,
            'mapping_width': 768,
            'dropout_rate': [0, 0],
            'mapping_dropout_rate': 0.0
        }

    },
    'swinir': {
        "M": {
            'in_channels': 3,
            'out_channels': 3,
            'embed_dim': 120,
            'depths': [6, 6, 6, 6, 6],
            'num_heads': [6, 6, 6, 6, 6],
            'resi_connection': '1conv',
            'sf': 8

        },
        "L": {
            'in_channels': 3,
            'out_channels': 3,
            'embed_dim': 180,
            'depths': [6, 6, 6, 6, 6, 6, 6, 6],
            'num_heads': [6, 6, 6, 6, 6, 6, 6, 6],
            'resi_connection': '1conv',
            'sf': 8
        },
    },
}


def create_swinir_model(in_channels, out_channels, embed_dim, depths, num_heads, resi_connection,
                        sf):
    return SwinIR(
        img_size=64,
        patch_size=1,
        in_chans=in_channels,
        num_out_ch=out_channels,
        embed_dim=embed_dim,
        depths=depths,
        num_heads=num_heads,
        window_size=8,
        mlp_ratio=2,
        sf=sf,
        img_range=1.0,
        upsampler="nearest+conv",
        resi_connection=resi_connection,
        unshuffle=True,
        unshuffle_scale=8
    )


def create_hdit_model(widths,
                      depths,
                      self_attns,
                      dropout_rate,
                      mapping_depth,
                      mapping_width,
                      mapping_dropout_rate,
                      in_channels,
                      out_channels,
                      patch_size
                      ):
    assert len(widths) == len(depths)
    assert len(widths) == len(self_attns)
    assert len(widths) == len(dropout_rate)
    mapping_d_ff = mapping_width * 3
    d_ffs = []
    for width in widths:
        d_ffs.append(width * 3)

    levels = []
    for depth, width, d_ff, self_attn, dropout in zip(depths, widths, d_ffs, self_attns, dropout_rate):
        if self_attn['type'] == 'global':
            self_attn = itv2.GlobalAttentionSpec(self_attn.get('d_head', 64))
        elif self_attn['type'] == 'neighborhood':
            self_attn = itv2.NeighborhoodAttentionSpec(self_attn.get('d_head', 64), self_attn.get('kernel_size', 7))
        elif self_attn['type'] == 'shifted-window':
            self_attn = itv2.ShiftedWindowAttentionSpec(self_attn.get('d_head', 64), self_attn['window_size'])
        elif self_attn['type'] == 'none':
            self_attn = itv2.NoAttentionSpec()
        else:
            raise ValueError(f'unsupported self attention type {self_attn["type"]}')
        levels.append(itv2.LevelSpec(depth, width, d_ff, self_attn, dropout))
    mapping = itv2.MappingSpec(mapping_depth, mapping_width, mapping_d_ff, mapping_dropout_rate)
    model = ImageTransformerDenoiserModelV2(
        levels=levels,
        mapping=mapping,
        in_channels=in_channels,
        out_channels=out_channels,
        patch_size=patch_size,
        num_classes=0,
        mapping_cond_dim=0,
    )

    return model


arch_name_to_object = {
    'hdit': create_hdit_model,
    'swinir': create_swinir_model,
}