|
import os |
|
if os.getenv('SPACES_ZERO_GPU') == "true": |
|
os.environ['SPACES_ZERO_GPU'] = "1" |
|
os.environ['K_DIFFUSION_USE_COMPILE'] = "0" |
|
import spaces |
|
import cv2 |
|
import gradio as gr |
|
import torch |
|
from basicsr.archs.srvgg_arch import SRVGGNetCompact |
|
from basicsr.utils import img2tensor, tensor2img |
|
from facexlib.utils.face_restoration_helper import FaceRestoreHelper |
|
from realesrgan.utils import RealESRGANer |
|
|
|
from lightning_models.mmse_rectified_flow import MMSERectifiedFlow |
|
|
|
torch.set_grad_enabled(False) |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
os.makedirs('pretrained_models', exist_ok=True) |
|
realesr_model_path = 'pretrained_models/RealESRGAN_x4plus.pth' |
|
if not os.path.exists(realesr_model_path): |
|
os.system( |
|
"wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -O pretrained_models/RealESRGAN_x4plus.pth") |
|
|
|
|
|
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') |
|
half = True if torch.cuda.is_available() else False |
|
upsampler = RealESRGANer(scale=4, model_path=realesr_model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half) |
|
|
|
pmrf = MMSERectifiedFlow.from_pretrained('ohayonguy/PMRF_blind_face_image_restoration').to(device) |
|
|
|
face_helper_dummy = FaceRestoreHelper( |
|
1, |
|
face_size=512, |
|
crop_ratio=(1, 1), |
|
det_model='retinaface_resnet50', |
|
save_ext='png', |
|
use_parse=True, |
|
device=device, |
|
model_rootpath=None) |
|
|
|
os.makedirs('output', exist_ok=True) |
|
|
|
|
|
def generate_reconstructions(pmrf_model, x, y, non_noisy_z0, num_flow_steps, device): |
|
source_dist_samples = pmrf_model.create_source_distribution_samples(x, y, non_noisy_z0) |
|
dt = (1.0 / num_flow_steps) * (1.0 - pmrf_model.hparams.eps) |
|
x_t_next = source_dist_samples.clone() |
|
t_one = torch.ones(x.shape[0], device=device) |
|
for i in range(num_flow_steps): |
|
num_t = (i / num_flow_steps) * (1.0 - pmrf_model.hparams.eps) + pmrf_model.hparams.eps |
|
v_t_next = pmrf_model(x_t=x_t_next, t=t_one * num_t, y=y).to(x_t_next.dtype) |
|
x_t_next = x_t_next.clone() + v_t_next * dt |
|
|
|
return x_t_next.clip(0, 1).to(torch.float32) |
|
|
|
def enhance_face(img, face_helper, has_aligned, only_center_face=False, paste_back=True, scale=2): |
|
face_helper.clean_all() |
|
|
|
if has_aligned: |
|
img = cv2.resize(img, (512, 512)) |
|
face_helper.cropped_faces = [img] |
|
else: |
|
face_helper.read_image(img) |
|
face_helper.get_face_landmarks_5(only_center_face=only_center_face, eye_dist_threshold=5) |
|
|
|
|
|
|
|
face_helper.align_warp_face() |
|
|
|
for cropped_face in face_helper.cropped_faces: |
|
|
|
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) |
|
cropped_face_t = cropped_face_t.unsqueeze(0).to(device) |
|
|
|
try: |
|
dummy_x = torch.zeros_like(cropped_face_t) |
|
output = generate_reconstructions(pmrf, dummy_x, cropped_face_t, None, 25, device) |
|
restored_face = tensor2img(output.squeeze(0), rgb2bgr=True, min_max=(0, 1)) |
|
print("\tSucceeded PMRF out") |
|
except RuntimeError as error: |
|
print(f'\tFailed inference for PMRF: {error}.') |
|
restored_face = cropped_face |
|
|
|
restored_face = restored_face.astype('uint8') |
|
face_helper.add_restored_face(restored_face) |
|
|
|
if not has_aligned and paste_back: |
|
|
|
if upsampler is not None: |
|
|
|
bg_img = upsampler.enhance(img, outscale=scale)[0] |
|
else: |
|
bg_img = None |
|
|
|
face_helper.get_inverse_affine(None) |
|
|
|
restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img) |
|
return face_helper.cropped_faces, face_helper.restored_faces, restored_img |
|
else: |
|
return face_helper.cropped_faces, face_helper.restored_faces, None |
|
|
|
|
|
@spaces.GPU() |
|
def inference(img, aligned, scale, num_steps): |
|
if scale > 4: |
|
scale = 4 |
|
img = cv2.imread(img, cv2.IMREAD_UNCHANGED) |
|
if len(img.shape) == 3 and img.shape[2] == 4: |
|
img_mode = 'RGBA' |
|
elif len(img.shape) == 2: |
|
img_mode = None |
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) |
|
else: |
|
img_mode = None |
|
|
|
h, w = img.shape[0:2] |
|
if h > 3500 or w > 3500: |
|
print('Image size too large.') |
|
return None, None |
|
|
|
if h < 300: |
|
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) |
|
|
|
face_helper = FaceRestoreHelper( |
|
scale, |
|
face_size=512, |
|
crop_ratio=(1, 1), |
|
det_model='retinaface_resnet50', |
|
save_ext='png', |
|
use_parse=True, |
|
device=device, |
|
model_rootpath=None) |
|
|
|
has_aligned = True if aligned == 'Yes' else False |
|
_, restored_aligned, restored_img = enhance_face(img, face_helper, has_aligned, only_center_face=False, |
|
paste_back=True) |
|
if has_aligned: |
|
output = restored_aligned[0] |
|
else: |
|
output = restored_img |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if img_mode == 'RGBA': |
|
extension = 'png' |
|
else: |
|
extension = 'jpg' |
|
save_path = f'output/out.{extension}' |
|
cv2.imwrite(save_path, output) |
|
|
|
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB) |
|
return output, save_path |
|
|
|
|
|
|
|
|
|
|
|
css = r""" |
|
""" |
|
|
|
demo = gr.Interface( |
|
inference, [ |
|
gr.Image(type="filepath", label="Input"), |
|
gr.Radio(['Yes', 'No'], type="value", value='aligned', label='Is the input an aligned face image?'), |
|
gr.Number(label="Rescaling factor (the rescaling factor of the final image)", value=2), |
|
gr.Number(label="Number of flow steps. A higher value should result in better image quality, but this comes at the expense of runtime.", value=25), |
|
], [ |
|
gr.Image(type="numpy", label="Output"), |
|
gr.File(label="Download the output image") |
|
], |
|
) |
|
|
|
|
|
demo.queue() |
|
demo.launch(state_session_capacity=15) |